Página 1 a partir de 66 resultados
Reactive oxygen species (ROS) are a key factor in abiotic stresses; excess ROS is harmful to plants. Glutathione reductase (GR) plays an important role in scavenging ROS in plants. Here, a GR gene, named SpGR, was cloned from Stipa purpurea and characterized. The full-length open reading frame was
We have isolated the Brassica campestris cDNA encoding glutathione reductase of 502 amino acid residues with molecular mass of 54.5 kDa. The deduced amino acid sequences were 92.2%, and 79.5% identical to those of Arabidopsis thaliana, and pea, respectively. As expected, it exhibited a high degree
Glutathione reductase (GR) was purified from the cyanobacterium Anabaena PCC 7120. A 3-kilobase genomic DNA fragment containing the coding sequence for the GR gene (gor) was identified and cloned by polymerase chain reaction based on sequences of selected peptides isolated from proteolyzed GR. The
Glutathione reductase (EC 1.6.4.2) is one of the main antioxidant enzymes of the plant cell. In Arabidopsis thaliana, glutathione reductase is encoded by two genes: the gr1 gene encodes the cytosolic-peroxisomal form, and the gr2 gene encodes the chloroplast-mitochondrial form. Little is known about
Thiol-based redox-regulation is vital to coordinate chloroplast functions depending on illumination and is well investigated for thioredoxin-dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione-mediated redox buffering. Yet,
A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins
Oxidative stress caused by ozone (O3 ) affects plant development, but the roles of specific redox-homeostatic enzymes in O3 responses are still unclear. While growth day length may affect oxidative stress outcomes, the potential influence of day length context on equal-time exposures to O3 is not
Glutathione reductase plays a crucial role in the elimination of H(2)O(2) molecules via the ascorbate-glutathione cycle. In this study, we used transgenic Arabidopsis plants with decreased glutathione reductase 2 (GR2) levels to investigate whether this GR2 activity protects the photosynthetic
Plant cells and tissues remain always on risk under abiotic and biotic stresses due to increased production of reactive oxygen species (ROS). Plants protect themselves against ROS induced oxidative damage by the upregulation of antioxidant machinery. Out of many components of antioxidant machinery,
Tight control of cellular redox homeostasis is essential for protection against oxidative damage and for maintenance of normal metabolism as well as redox signaling events. Under oxidative stress conditions, the tripeptide glutathione can switch from its reduced form (GSH) to oxidized glutathione
Lipid peroxide-derived reactive carbonyl species (RCS), generated downstream of reactive oxygen species (ROS), are critical damage-inducing species in plant aluminum (Al) toxicity. In mammals, RCS are scavenged primarily by glutathione (reduced form of glutathione, GSH), but in plant Al stress,
Glutathione is involved in thiol redox signaling and acts as a major redox buffer against reactive oxygen species, helping to maintain a reducing environment in vivo. Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide (GSSG) into reduced glutathione (GSH). The Arabidopsis
Antioxidant isoenzymes function to eliminate free radicals and are localized to several different subcellular compartments within the plant cell. In Arabidopsis thaliana exposed to ozone (O3), we have monitored the accumulation of mRNAs encoding both cytosolic and chloroplastic antioxidant
A full-length abscisic acid (ABA) senescence and ripening inducible gene named LcAsr was obtained from litchi. Bioinformatic analysis showed that full-length LcAsr was 1,177 bp and contained an open reading frame (ORF) encoding 153 amino acids, 85- and 146-bp 5' and 3' UTRs, respectively. LcAsr was