Página 1 a partir de 38 resultados
Reduced NMDA receptor functioning is hypothesized to underlie the cognitive and negative symptoms associated with schizophrenia. However, because direct activation of the NMDA receptor is accompanied by neurotoxicity, mechanisms that activate the glycine co-agonist site on the NMDA receptor could
BACKGROUND
Latent inhibition (LI) is the poorer conditioning to a stimulus seen when conditioning is preceded by repeated non-reinforced pre-exposure to the stimulus. LI indexes the ability to ignore irrelevant stimuli and is used extensively to model attentional impairments in schizophrenia. We
Frontocortical NMDA receptors are pivotal in regulating cognition and mood, are hypofunctional in schizophrenia, and may contribute to autistic spectrum disorders. Despite extensive interest in agents potentiating activity at the co-agonist glycine modulatory site, few comparative functional studies
The strychnine insensitive glycine receptor antagonists (+/-) HA 966 (2.5, 3.5, 4.25 and 5.0mg/kg) and 7 chlorokynurenic acid (5.0, 10.0, and 15.0mg/kg), the putative sigma agents NPC 16377 (5.0 and 8.0mg/kg), BMY 14802 (5.0, 7.5 and 10.0mg/kg), and ifenprodil (5.0 and 7.0mg/kg) and the reference
Activation of N-methyl-d-aspartate (NMDA) receptors has been hypothesized to mediate certain forms of learning and memory. This hypothesis is based on the ability of competitive and uncompetitive NMDA receptor antagonists to disrupt learning. We investigated the effects of glycine site antagonists
Specific binding of [3H]strychnine was studied on membranes prepared from rat spinal cord. Several antagonists and agonists of 5-HT3 receptors and tropane derivatives displaced [3H]strychnine binding with micromolar potencies. In the presence of 10 microM glycine a high affinity (nanomolar)
The present study investigated the effect of d-cycloserine, a partial agonist at the glycine binding site on NMDA receptor complex, on the performance of scopolamine-treated adult rats in a water maze task assessing spatial learning and in a delayed non-matching to position task assessing working
The effects of the selective inhibitor of the glycine transporter 1, R231857, in development for schizophrenia, on the central nervous system (CNS) were investigated in healthy males in the absence and presence of scopolamine. This was a double-blind, placebo-controlled, four-period crossover
The flow of cortical information through the basal ganglia is a complex spatiotemporal pattern of increased and decreased firing. The striatum is the biggest input nucleus to the basal ganglia and the aim of this study was to assess the role of inhibitory GABA(A) and glycine receptors in regulating
Strychnine-insensitive glycine binding sites have recently been shown to positively modulate N-methyl-D-aspartate (NMDA) receptors. In the present study, the effects on recognition memory of D-cycloserine, a partial agonist at the glycine modulatory site on the NMDA receptor, were evaluated in
The partial glycine agonist d-cycloserine may be of therapeutic use as a cognitive enhancer. We examined the ability of d-cycloserine (3-14 mg/kg i.m.) to reverse cognitive impairments induced by scopolamine (0.03 mg/kg) or PCP (0.25 mg/kg). There was no evidence for a dose-related improvement in
The muscarinic antagonist scopolamine (SCOP; 1.0 mg/kg, ip) impaired both the acquisition of a learning task in the Morris water maze (MWM) and choice accuracy in the T-maze reinforced alternation procedure in rats. Acetylcholinesterase inhibitors (AChEIs) have been shown to attenuate these
A significant interaction between N-methyl-D-aspartate (NMDA) and muscarinic receptors has been suggested in the modulation of learning and memory processes. The present study further investigates this issue and explores whether d-cycloserine (DCS), a partial agonist at the glycine binding site of
D-Cycloserine is a partial agonist at the strychnine-insensitive neuronal glycine receptor and positively modulates the N-methyl-D-aspartate (NMDA) excitatory amino acid receptor. NMDA receptors appear to be important in learning and memory, and D-cycloserine facilitates learning in rats. In man,
Soy (Glycine max, family Leguminosae), which contains isoflavones and saponins as main constituents, is known to exhibit memory-enhancing effects. Therefore, to investigate the role of soyasaponins in memory impairments, we isolated soyasaponins Ab (SA) and Bb (SB) from soybean and measured their