Página 1 a partir de 34 resultados
In this paper, we investigated the relationship between hydrogen sulfide (H2S) and mitogen-activated protein kinase kinase (MEK1/2) in jasmonic acid (JA)-regulated the redox state of ascorbate in the leaves of Arabidopsis thaliana. The results showed that JA significantly enhanced
The role of hydrogen sulfide (H2S) and its relationship with hydrogen peroxide (H2O2) in brassinosteroid-induced stomatal closure in Arabidopsis thaliana (L.) Heynh. were investigated. In the present study, 2,4-epibrassinolide (EBR, a bioactive BR) induced stomatal closure in the wild type, the
We investigated the signal relationship between phospholipase Dα1 (PLDα1) and the gas signal molecule hydrogen sulfide (H2S) in Arabidopsis thaliana response to the allelopathy of diterpenoid oridonin. The wild type Arabidopsis Columbia (WT), phospholipase Dα1 (PLDα1) deletion mutant
Hydrogen sulfide (H2 S) is a newly-discovered signaling molecule in plants and has caused increasing attention in recent years, but its function in stomatal movement is unclear. In plants, H2 S is synthesized via cysteine degradation catalyzed by D-/L-cysteine desulfhydrase (D-/L-CDes).
Hydrogen sulfide (H2S) is a gasotransmitter and plays an important role in many physiological processes in mammals. Studies of its functions in plants are attracting ever growing interest, for example, its ability to enhance drought resistance in Arabidopsis. A general role of microRNAs (miRNAs) in
Hydrogen sulfide (H(2)S) plays a crucial role in human and animal physiology. Its ubiquity and versatile properties have recently caught the attention of plant physiologists and biochemists. Two cysteine desulfhydrases (CDes), L-cysteine desulfhydrase and D-cysteine desulfhydrase, were identified as
Hydrogen sulfide (H2S) is a gaseous signaling molecule that mediates physiological processes in animals and plants. In this study, we investigated the relationship of H2S and mitogen activated protein kinase (MAPK) under cold stress in Arabidopsis. H2S up-regulated MAPK expression levels and was
Hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) function as the signaling molecules in plants responding to salt stresses. The present study presents a signaling network involving H2S and H2O2 in salt resistance pathway of the Arabidopsis root. Arabidopsis roots were sensitive to 100 mM NaCl
Although ample evidence showed that exogenous hydrogen gas (H2) controls a diverse range of physiological functions in both animals and plants, the selective antioxidant mechanism, in some cases, is questioned. Importantly, most of the experiments on the function of H2 in
Despite of its essentiality, nickel (Ni) in excess is toxic for plants partly due to the overproduction of reactive oxygen species (ROS) and the consequent increase in oxidative stress signalling. However, in Ni-stressed plants little is known about the signal transduction of reactive nitrogen
Hydrogen sulfide (H2S) is an important gaseous molecule responding to osmotic stress in plant. Phospholipase Dα1 (PLDα1) and reactive oxygen species (ROS) are involved in many biotic or abiotic stress responses. Using the seedlings of Arabidopsis thaliana ecotype (WT), PLDα1 deficient
Stomatal density is important for crop yield. In this paper, we studied the epidermal pattern factors (EPFs) related to stomatal development. Prokaryotic expression vectors were constructed to obtain EPFs. Then the relationship between EPFs and hydrogen sulfide (H2S) was established. First, AtEPF1,
Hydrogen sulfide (H2S) has become a new signal molecule in higher plants which seems to be involved in almost all physiological processes from seed germination, root and plant growth until flowering and fruit ripening. Moreover, H2S also participates in the mechanism of
Hydrogen sulfide (H2S) is an important signaling molecule in plants. Our previous report suggested that H2S signaling affects the actin cytoskeleton and root hair growth. However, the underlying mechanisms of its effects are not understood. S-Sulfhydration of proteins is regulated directly by H2S,
Hydrogen sulfide is an important signaling molecule that functions as a physiological gasotransmitter of comparable importance to NO and CO in mammalian systems. In plants, numerous studies have shown that sulfide increases tolerance/resistance to stress conditions and regulates essential processes.