11 resultados
A glucosyltransferase, which catalyses the glucosylation of flavonols, using uridine diphosphate-D-glucose as glucose donor, has been isolated and purified about 5-10 fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The pH optimum for this reaction was ca. 8.5 in
We report the production of astragalin (AST) from regiospecific modifications of naringenin (NRN) in Escherichia coli BL21(DE3). The exogenously supplied NRN was converted into dihydrokaempferol (DHK) and then kaempferol (KMF) in the presence of flavanone-3-hydroxylase (f3h) and flavonone synthase
Flavonoids found in plants most likely undergo a variety of modification reactions such as hydroxylation, glycosylation, and/or methylation. Among these, O-methylation has an effect on the solubility and thus on the antimicrobial activity of the flavonoids. We analyzed the conversion of naringenin
Flavonoids are a very diverse group of plant secondary metabolites with a wide array of activities in plants, as well as in nutrition and health. All flavonoids are derived from a limited number of flavanone intermediates, which serve as substrates for a variety of enzyme activities, enabling the
BACKGROUND
Pickled soybeans or vinegar beans have long been used as a folk remedy and also a supplemental nutritional source in Korea. In general the pickling process in vinegar improves the digestibility of soybeans as well as increases the availability of various (non-)nutrients in soybeans.
Transfer of the strain NGR234nodD 1 gene into the narrow host range R. trifolii strain ANU843 on either a 6.7-kb HindIII or 17-kb XhoI fragment broadens the host range of this bacterium to include the tropical legumes Vigna unguiculata, Glycine ussuriensis, Leucaena leucocephala, and siratro
There are several branch points in the flavonoid synthesis pathway starting from chalcone. Among them, the hydroxylation of flavanone is a key step leading to flavonol and anthocyanin. The flavanone 3-beta-hydroxylase (GmF3H) gene was cloned from soybean (Glycine max cultivar Sinpaldal) and shown to
Isoflavones are legume-specific flavonoids best known for their potential cancer preventive and phytoestrogenic properties. In this study, we attempted to engineer the isoflavone pathway in the popular fruit crop tomato (Solanum lycopersicum L). Tomato plants were transformed with a soybean (Glycine
The first specific reaction in the biosynthesis of isoflavonoid compounds in plants is the 2-hydroxylation, coupled to aryl migration, of a flavanone. Using a functional genomics approach, we have characterized a cDNA encoding a 2-hydroxyisoflavanone synthase from soybean (Glycine max). Microsomes
Prenylated isoflavones are secondary metabolites that are mainly distributed in legume plants. They often possess divergent biological activities such as anti-bacterial, anti-fungal, and anti-oxidant activities and thus attract much attention in food, medicinal, and agricultural research fields.
Flavonoids and isoflavonoids are major plant secondary metabolites that mediate diverse biological functions and exert significant ecological impacts. These compounds play important roles in many essential physiological processes. In addition, flavonoids and isoflavonoids have direct but complex