Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

oxalis laciniata/anti inflamatório

O link é salvo na área de transferência
Página 1 a partir de 20 resultados
Farnesoid X receptor (FXR) is expressed in human and rodent placentas. Nevertheless, its function remains obscure. This study investigated the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, on LPS-induced fetal death and intrauterine growth restriction. All pregnant mice except

Obeticholic acid alleviate lipopolysaccharide-induced acute lung injury via its anti-inflammatory effects in mice.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Acute lung injury (ALI) is a common disease that may result in acute respiratory failure and death. However, there are still no effective treatments for ALI. Several studies have shown that farnesoid X receptor (FXR) has an anti-inflammatory effect. We investigated the effects of obeticholic acid

Primary Biliary Cholangitis and Bile Acid Farnesoid X Receptor Agonists

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by the progressive destruction of the intrahepatic bile ducts. Currently, the first line drug for PBC is ursodeoxycholic acid (UDCA) characterized by anti-apoptotic, anti-inflammatory and protective actions on
Oxalis corniculata is well known for its medicinal properties like anti-inflammatory, digestive, diuretic, antibacterial, antiseptic etc. The present study focuses on the ability of O. corniculata to alleviate liver damage caused by over dose of paracetamol. Antioxidant activity of O. corniculata

Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl4)-induced acute

[Experimental study on pharmacodynamical of Oxalis griffithii, a national medicine in Guizhou].

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
OBJECTIVE To study the on effects of anti-bacteria, anti-inflammatory and pyretolysis of Oxalis griffithii, it is possible safety. METHODS The mice model was established by xylene (auricle smear method) and carrageenin (injection under the aponeuroses) respectively, rat febrile model was builded by
Seedlings of Rumex acetosa L. (sorrel) were grown in floating system and two consecutive cuts took place: 15 (C1) and 30 (C2) days after sowing. An untargeted metabolomics approach was utilised to fingerprint phenolics and other health-related compounds in sorrel leaves, as well as to unveil
The farnesoid X receptor (FXR) is a ligand-activated transcription factor that regulates genes involved in bile acid metabolism. Accumulating data demonstrate that FXR has an anti-inflammatory activity. The present study aimed to investigate the effect of obeticholic acid (OCA), a novel synthetic
Activation of the farnesoid X receptor (FXR), a member of the nuclear receptor steroid superfamily, leads to anti-inflammatory and anti-fibrotic effects in several tissues, including the lung. We have recently demonstrated a protective effect of the farnesoid X receptor (FXR) agonist

Splenic dendritic cell involvement in FXR-mediated amelioration of DSS colitis.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Inflammatory Bowel Disease (IBD) is a multifactorial disorder involving dysregulation of the immune response and bacterial translocation through the intestinal mucosal barrier. Previously, we have shown that activation of the bile acid sensor Farnesoid X Receptor (FXR), which belongs to the family

Novel and emerging therapies for cholestatic liver diseases.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
While bile acids are important for both digestion and signalling, hydrophobic bile acids can be harmful, especially when in high concentrations. Mechanisms for the protection of cholangiocytes against bile acid cytotoxicity include negative feedback loops via farnesoid X nuclear receptor (FXR)

Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: a review.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
This article reviews the reported phytochemical, pharmacological and toxicological properties of Hibiscus sabdariffa L. (English: roselle, red sorrel; Arabic: karkade), the calyces of which are used in many parts of the world to make cold and hot drinks. Nutritionally, these contain ascorbic acid

Effects of Farnesoid X Receptor Activation on Arachidonic Acid Metabolism, NF-kB Signaling, and Hepatic Inflammation.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Inflammation has a recognized role in nonalcoholic fatty liver disease (NAFLD) progression. In the present work, we studied the effect of high-fat diet (HFD) on arachidonic acid metabolism in the liver and investigated the role of the farnesoid X receptor (FXR, NR1H4) in eicosanoid biosynthetic
It is increasingly recognized that farnesoid X receptor (FXR) has anti-inflammatory and antioxidant activities. The present study investigated the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, on renal inflammation and oxidative stress in a model of sepsis-induced acute kidney

Beneficial effects of bile acid receptor agonists in pulmonary disease models.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
BACKGROUND Bile acids act as steroid hormones, controlling lipid, glucose and energy metabolism, as well as inflammation and fibrosis. Their actions are implemented through activation of nuclear (FXR, VDR, PXR) and membrane G protein-coupled (TGR5, S1PR2) receptors. Areas covered: This review
Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge