Página 1 a partir de 43 resultados
Oplopanax horridus and Panax ginseng are members of the plant family Araliaceae, which is rich in structurally diverse polyacetylenes. In this work, we isolated and determined structures of 23 aliphatic C17 and C18 polyacetylenes, of which five are new compounds.
A method for simultaneous determination of ginsenosides and polyacetylenes in Panax quinquefolium L. (American ginseng) roots was developed. The ginsenosides Rb1, Rb2, Rc, Rd, Re, Rg1, Ro, malonyl-Rb1, malonyl-Rc, and malonyl-Rd and the polyacetylenes falcarinol and panaxydol were extracted from
The presented results show the special advantage of Raman spectroscopy in the investigation of polyacetylenes in American ginseng (Panax quinquefolium L.) roots. The compounds are measured directly in the plant tissue without any preliminary sample preparation. The polyacetylene signal is strong and
A new HPLC method was developed to separate and identify three polyacetylenes (panaxynol, panaxydol and 1,8-heptadecadiene-4,6-diyne-3,10-diol) found in Panax species. The mobile phase was a linear gradient of 2 : 1 : 3 to 2 : 1 : 1 (v/v/v) methanol/acetonitrile/water in 40 min. HPLC analysis was
Panaxacol (1) and dihydropanaxacol (2), cytotoxic polyacetylenes isolated from the callus of Panax ginseng, were synthesized starting from D-(-)-diethyl tartrate. The absolute configuration of 1 was determined to be 9R, 10R and the absolute configuration at C-3 of 2 was tentatively assigned as 3S by
Column chromatographic separation of the roots of cultivated-wild ginseng (Jangnoisam) led to the isolation of seven polyacetylenes (1-7). Their structures were determined by spectroscopic methods to be panaxynol (1), ginsenoyne-A (2), panaxydol (3), 10-methoxy heptadeca-1-ene-4, 6-dyne-3, 9-diol
The effects of the three polyacetylene compounds, panaxynol, panaxydol and panaxytriol, on in vitro-cell growth were studied. These compounds are much different in their water-solubility. In order to increase water-solubility, solid complexes of polyacetylene compounds with alpha-cyclodextrin (CD)
The ω-hydroxyl-panaxytriol (1) and ω-hydroxyl-dihydropanaxytriol (2)-are rare examples of polyacetylene metabolism by microbial transformation, and these new metabolites (1, 2) from fermented red ginseng (FRG) by solid co-culture induction of two Chaetomium
Fifty selected roots from a 7-year-old American ginseng (Panax quinquefolium L.) plant population grown in Denmark, with root weights varying from 191 to 490 g fresh weight (FW), were investigated for bioactive ginsenosides and polyacetylenes (PAs) in order to determine the correlation between the
Two new polyacetylenes, 1-hydroxydihydropanaxacol (3) and 17-hydroxypanaxacol (4), were isolated from Panax ginseng hairy root culture, along with dihydropanaxacol (1), panaxacol (2) and ginsenoyne D (5). Highly hydroxylated compounds 1-4 were isolated from the medium and compound 5, which was a
A rapid pressurized liquid extraction (PLE) and high-performance liquid chromatography coupled with diode array detection and mass spectrometry (HPLC-DAD-MS) method for the simultaneous determination of one flavonoid (panasenoside), nine saponins (ginsenoside Rg1, Re, Rf, Rg2, Rb1, Rc, Rb2, Rb3 and
In our research program to identify cholinesterase and β-secretase inhibitors, we investigated Ginseng (root of Panax ginseng), a crude drug described as a multifunctional drug in the ancient Chinese herbal book Shennong Ben Cao Jing. Results from hexane and methanol extracts showed moderate
A sensitive method for quantitating the pharmacologically active polyacetylenes panaxynol and panaxydol in Radix Ginseng was developed using a capillary gas chromatography-mass spectrometric (GC-MS) method. The detection mode of selected ion monitoring (SIM) allowed sensitive and selective
Neurotrophins play an important role in the control of the hair growth cycle. Therefore, neurotrophin receptor antagonists have therapeutic potential for the treatment of hair growth disorders. In this study, we investigated the inhibitory effect of Panax ginseng, a medicinal plant commonly used to
Panax ginseng has been studied for its chemo-preventive properties and pharmaceutical potential. Polyacetylenic compounds isolated from Panax ginseng root typically comprised of non-polar C17 compound have been reported to exhibit bioactive properties. The objective of this project is to extract,