Página 1 a partir de 207 resultados
The cytochrome-c reductase (EC 1.10.2.2) of the mitochondrial respiratory chain couples electron transport from ubiquinol to cytochrome c with proton translocation across the inner mitochondrial membrane. The enzyme from potato was shown to be composed of 10 subunits. Isolation and characterization
Ascrobate free-radical reductase (EC 1.6.5.4) from potato tubers was purified to apparent homogencity by a method which included ammonium-sulfate precipitation, gel filtration and chromatography on diethylaminoethyl cellulose and hydroxylapatite. Gel filtration and gel electrophoresis showed that
Cytochrome c reductase from potato comprises ten subunits with apparent molecular sizes between 55 and < 10 kDa. The subunit with the highest electrophoretic mobility on SDS-polyacrylamide gels was isolated and analysed by cyclic Edman degradation. Mixtures of degenerative oligonucleotides were
The 'Hinge' protein of cytochrome c reductase from fungi and mammals is thought to support electron transport from cytochrome c1 to cytochrome c and was reported to be one of the most acidic proteins known. Isolation and analysis of cDNA clones of the first 'Hinge' protein from a plant source
3-Hydroxy-3-methylglutaryl coenzyme A reductase (NADPH) was solubilized by trypsin digestion from sliced potato tuber microsomes, and purified to apparent homogeneity in the absence of detergent with a recovery of 1.8%. The enzyme had a specific activity of 7,910 nmol of mevalonate formed per min
We have partially purified the CO2 reductase, present in green potato tuber chloroplasts, as a latent form. Illumination of the chloroplasts in the absence of substrate, bicarbonate, activated the enzyme, which could then be obtained in soluble forms. Purification of the enzyme was achieved by
The NADH-ferricyanure reductase activity of Potato microsomes is stimulated by non ionic detergents (Triton X100 and Tween80) and is partially inhibited by ionic detergents (sodium-cholate and deoxycholate). All these four detergents progressively decreased the NADH-cytochrome c reductase in the
In contrast to the in-depth knowledge concerning nitric oxide (NO) function, our understanding of NO synthesis in plants is still very limited. In view of the above, this paper provides a step by step presentation of the reductive pathway for endogenous NO generation involving nitrate reductase (NR)
BACKGROUND
Metallothionein (MT) is a group of proteins with low molecular masses and high cysteine contents, and it is classified into different types, which generally contains two domains with typical amino acid sequences.
RESULTS
In this report, two full-length cDNAs (MT-1 and MT-II) encoding
The cytochrome c reductase complexes from fungi and mammals both contain a 14-kD protein (yeast, 14.4 kD; bovine, 13.4 kD) that does not directly participate in electron transfer but possibly is indirectly involved in the function of the complex and has a role in assembly of the multimeric enzyme. A
A genomic fragment containing the dihydroflavonol 4-reductase B (DFR-B) gene was cloned from the sweet potato (Ipomoea batatas) and its nucleotide sequence was analyzed. The exons and flanking regions were highly homologous to those of previously reported DFR-B genes of the Japanese morning glory,
A cDNA encoding a putative dehydroascorbate reductase (DHAR) was cloned from sweet potato. The deduced protein showed a high level of sequence homology with DHARs from other plants (67 to approximately 81%). Functional sweet potato DHAR was overexpressed and purified. The purified enzyme showed an
Purple-fleshed sweet potato is good for health due to rich anthocyanins in tubers. Although the anthocyanin biosynthetic pathway is well understood in up-ground organs of plants, the knowledge on anthocyanin biosynthesis in underground tubers is limited. In the present study, we isolated and
A cDNA encoding a small cysteine-rich protein designated defensin (SPD1) was isolated from sweet potato storage roots. On the basis of the amino acid sequence similarity and conserved residues, it is suggested that SPD1 is a member of the plant defensin family. Recombinant SPD1 protein overproduced
A cDNA encoding a putative glutathione reductase (GR) was cloned from sweet potato (Ib). The deduced protein showed high level of sequence homology with GRs from other plants (79-38%). A three-dimensional (3-D) homology structure was created. The active site Cys residues are conserved in all