Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

suberin/oryza

O link é salvo na área de transferência
ArtigosTestes clínicosPatentes
Página 1 a partir de 23 resultados
CONCLUSIONS Non-optimal ammonium levels significantly alter root architecture, anatomy and root permeabilities for water and nutrient ions. Higher ammonium levels induced strong apoplastic barriers whereas it was opposite for lower levels. Application of nitrogen fertilizer increases crop
Internal aeration is crucial for root growth in waterlogged soil. A barrier to radial oxygen loss (ROL) can enhance long-distance oxygen transport via the aerenchyma to the root tip; a higher oxygen concentration at the apex enables root growth into anoxic soil. The ROL barrier is formed within the
Apoplastic transport barriers in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix) were isolated enzymatically. Following chemical degradation (monomerization, derivatization), the amounts of aliphatic and aromatic suberin monomers were analysed quantitatively by gas

Root-Derived Short-Chain Suberin Diacids from Rice and Rape Seed in a Paddy Soil under Rice Cultivar Treatments.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were

Control of water uptake by rice ( Oryza sativa L.): role of the outer part of the root.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
A new pressure-perfusion technique was used to measure hydraulic and osmotic properties of the outer part of roots (OPR) of 30-day-old rice plants (lowland cultivar: IR64, and upland cultivar: Azucena). The OPR comprised rhizodermis, exodermis, sclerenchyma and one cortical cell layer. The technique

Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The formation of a barrier to radial oxygen (O2 ) loss (ROL) in the root is an important adaptation of plants to root flooding, but the biochemical changes in plant roots where the barrier is formed are unclear. In this study, we analysed metabolic profiles and gene expression profiles in roots of

Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
OBJECTIVE Many wetland species form aerenchyma and a barrier to radial O(2) loss (ROL) in roots. These features enhance internal O(2) diffusion to the root apex. Barrier formation in rice is induced by growth in stagnant solution, but knowledge of the dynamics of barrier induction and early
Brittleness culm is an important agronomic trait that has a potential usefulness in agricultural activity as animal forage although the developmental mechanism is not clear yet. In the present study, the anatomical and chemical characteristics as well as some ecophysiological features in the
OBJECTIVE Root hydraulic limitations (i.e. intra-plant restrictions to water movement) may be related to crop performance under drought, and groupings in the hydraulic function of drought-tolerant and drought-susceptible rice (Oryza sativa) varieties have been previously reported. This study aimed
The radial translocation of cadmium (Cd) from the root to the shoot is one of the major processes affecting Cd accumulation in rice (Oryza sativa L.) grains, but few studies have focused on Cd apoplastic transport in rice. The aim of this study was to determine how apoplastic barriers affect Cd

Development of Casparian strip in rice cultivars.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The development of Casparian strips (CSs) on the endo- and exodermis and their chemical components in roots of three cultivars of rice (Oryza sativa) with different salt tolerance were compared using histochemistry and Fourier transform infrared (FTIR) spectroscopy. The development and deposition of
Radial oxygen loss (ROL) and root porosity of rice (Oryza sativa L.) plants grown in either aerated or deoxygenated (stagnant) conditions were combined for the first time with extensive histochemical and biochemical studies of the apoplastic barriers in the roots' peripheral cell layers. Growth in
It has been shown that rice roots grown in a stagnant medium develop a tight barrier to radial oxygen loss (ROL), whereas aerated roots do not. This study investigated whether the induction of a barrier to ROL affects water and solute permeabilities. Growth in stagnant medium markedly reduced the

Silicon enhances suberization and lignification in roots of rice (Oryza sativa).

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The beneficial element silicon (Si) may affect radial oxygen loss (ROL) of rice roots depending on suberization of the exodermis and lignification of sclerenchyma. Thus, the effect of Si nutrition on the oxidation power of rice roots, suberization and lignification was examined. In addition,

Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.).

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Rice is an important crop that is very sensitive to salinity. However, some varieties differ greatly in this feature, making investigations of salinity tolerance mechanisms possible. The cultivar Pokkali is salinity tolerant and is known to have more extensive hydrophobic barriers in its roots than
Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge