8 resultados
Tanshinone I (Tan I) is a diterpenoid isolated from Salvia miltiorrhiza Bunge and exhibits antitumor effects in several cancers. However, the anti-obesity properties of Tan I remain unexplored. Here, we evaluated the anti-obesity effects of Tan I in high-fat-diet (HFD)-induced obese mice and
Peroxisome proliferator-activated receptor (PPAR) gamma is a nuclear receptor that coordinates carbohydrate and lipid metabolism, and is a therapeutic target for type 2 diabetes. Tanshinone IIA (Tan) is a lipophilic diterpene that is widely used to treat cardiovascular diseases in traditional
Research has indicated that stress on the endoplasmic reticulum (ER) of a cell affects the pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). Palmitate, a saturated fatty acid, is known to induce toxicity and cell death in
Tanshinone IIA is a diterpene quinone isolated from the roots of Salviamiltiorrhiza bunge that has traditionally been used in China for the treatment of cardiovascular and cerebrovascular disorders. Although there is recent evidence showing that tanshinone IIA has an anti-obesity effect, its
Selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential as a treatment for metabolic syndrome including type 2 diabetes mellitus and obesity. To identify 11β-HSD1 inhibitors, we conducted high-throughput screening (HTS) of active natural product
Fatty acid synthase (FAS) is considered as a novel drug target for the development of anticancer and anti-obesity agents. Bioassay-guided fractionation of a n-hexane-soluble extract prepared from the roots of Salvia miltiorrhiza Bunge (Labiatae), using an in vitro enzyme assay, led to the isolation
Obesity is a worldwide epidemic problem and correlates to varieties of acute or chronic lung diseases such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, and pulmonary fibrosis. An increase of leptin, a kind of adipokine, in lean mice plasma has been found to impair
Salvia miltiorrhiza (SM), one of the frequently used herbs in traditional Chinese medicine (TCM), has now attracted rising interests for a possible alternative in the management of diabetes. This review is aimed to providing a comprehensive perspective of SM in phytochemical