Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Advances in cardiology 2008

Hyperglycemia and the pathobiology of diabetic complications.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Doron Aronson

Cuvinte cheie

Abstract

Both type I and type II diabetes are powerful and independent risk factors for coronary artery disease (CAD), stroke, and peripheral arterial disease. Atherosclerosis accounts for virtually 80% of all deaths among diabetic patients. Prolonged exposure to hyperglycemia is now recognized as a major factor in the pathogenesis of diabetic complications, including atherosclerosis. Hyperglycemia induces a large number of alterations at the cellular level of vascular tissue that potentially accelerates the atherosclerotic process. Animal and human studies have elucidated several major mechanisms that encompass most of the pathological alterations observed in the diabetic vasculture. These include: (1) Nonenzymatic glycosylation of proteins and lipids which can interfere with their normal function by disrupting molecular conformation, alter enzymatic activity, reduce degradative capacity, and interfere with receptor recognition. In addition, glycosylated proteins interact with a specific receptor present on all cells relevant to the atherosclerotic process, including monocyte-derived macrophages, endothelial cells, and smooth muscle cells. The interaction of glycosylated proteins with their receptor results in the induction of oxidative stress and proinflammatory responses. (2) Protein kinase C (PKC) activation with subsequent alteration in growth factor expression. (3) Shunting of excess intracellular glucose into the hexosamine pathway leads to O-linked glycosylation of various enzymes with perturbations in normal enzyme function. (4) Hyperglycemia increases oxidative stress through several pathways. A major mechanism appears to be the overproduction of the superoxide anion (O-2 ) by the mitochondrial electron transport chain. (5) Hyperglycemia promotes inflammation through the induction of cytokine secretion by several cell types including monocytes and adipocytes. Importantly, there appears to be a tight pathogenic link between hyperglycemia-induced oxidant stress and other hyperglycemia-dependent mechanisms of vascular damage described above, namely AGEs formation, PKC activation, and increased flux through the hexosamine pathway. For example, hyperglycemia-induced oxidative stress promotes both the formation of advanced glycosylation end products and PKC activation.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge