Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Asia Pacific Journal of Clinical Nutrition 2005

Intracellular mechanisms mediating tocotrienol-induced apoptosis in neoplastic mammary epithelial cells.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Paul W Sylvester
Sumit Shah

Cuvinte cheie

Abstract

Tocotrienols and tocopherols represent the two subgroups that make up the vitamin E family of compounds. However, tocotrienols display significantly more potent apoptotic activity in neoplastic mammary epithelial cells than tocopherols. Studies were conducted to determine the intracellular mechanism(s) mediating tocotrienol-induced apoptosis in neoplastic +SA mouse mammary epithelial cells in vitro. An initial step in apoptosis is the activation of 'initiator' caspases (caspase-8 or -9) that subsequently activate 'effector' caspases (caspase-3, -6 and -7) and induce apoptosis. Treatment with cytotoxic doses of alpha-tocotrienol (20 microM) resulted in a time-dependent increase in caspase-8 and caspase-3 activity. Combined treatment with specific caspase-8 or caspase-3 inhibitors completely blocked alpha-tocotrienol-induced apoptosis and caspase-8 or caspase-3 activity, respectively. In contrast, alpha-tocotrienol treatment had no effect on caspase-9 activation, and combined treatment with a specific caspase-9 inhibitor did not block alpha-tocotrienol-induced apoptosis in (+)SA cells. Since caspase-8 activation is associated with the activation of death receptors, such as Fas, tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL) receptors, studies were conducted to determine the exact death receptor(s) and ligand(s) involved in mediating tocotrienol-induced caspase-8 activation and apoptosis. Treatment with Fas-ligand (FasL), Fas-activating antibody, or TRAIL failed to induce cell death in (+)SA neoplastic mammary epithelial cells, suggesting that these cells are resistant to death receptor-induced apoptosis. Moreover, treatment with cytotoxic doses of alpha-tocotrienol did not alter the intracellular levels of Fas, FasL, or Fas-associated death domain (FADD) in these cells. Western blot analysis also showed that alpha-tocotrienol did not induce FasL or FADD translocation from the cytosolic to membrane fraction in these cells. Finally, treatment with Fas-blocking antibody did not reverse the tocotrienol-induced apoptosis in (+)SA cells. These data demonstrate that tocotrienol-induced caspase-8 activation and apoptosis is not mediated through death receptor activation in malignant (+)SA mammary epithelial cells. Resistance to death receptor-induced apoptosis has been shown to be associated with increased expression of apoptosis-inhibitory proteins, such as FLICE-inhibitory protein (FLIP), and enhanced signalling of the phosphatidylinositol 3-kinase (PI3K)/PI3K-dependent kinase (PDK)/Akt mitogenic pathway. Additional studies showed that treatment with cytotoxic doses of alpha-tocotrienol decreased total, membrane, and cytosolic levels of FLIP, and reduced phosphorylated PDK-1 (active) and phosphorylated-Akt (active) levels in these cells. In summary, these findings demonstrate that tocotrienol-induced caspase-8 activation and apoptosis in malignant (+)SA mammary epithelial cells is not mediated through the activation of death receptors, but appears to result from the suppression of the PI3K/PDK/Akt mitogenic signalling pathway, and subsequent reduction in intracellular FLIP expression.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge