Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Rheumatic Diseases 2018-Nov

Regulation of osteoblasts by alkaline phosphatase in ankylosing spondylitis.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Sungsin Jo
Jinil Han
Young L Lee
Subin Yoon
Jaehyun Lee
Sung E Wang
Tae-Hwan Kim

Cuvinte cheie

Abstract

OBJECTIVE

Ankylosing spondylitis (AS) is characterized by excessive spinal ankylosis and bone formation. Alkaline phosphatase (ALP) activity is reported to be high in AS, but little is known about the molecular relationship between ALP and AS. The aims of this study were to investigate the relevance of ALP to AS and the role of ALP in the regulation of osteoblast differentiation in AS.

METHODS

High-throughput data with accession numbers GSE73754 and GSE41038 were downloaded from the Gene Expression Omnibus. We retrospectively collected and compared the ALP levels of male patients with AS to those of sex- and age-matched healthy controls (HC) and rheumatoid arthritis (RA) patients. Total serum ALP and ALP activity were measured in the AS and RA groups. ALP gene expression and intracellular ALP activity were analyzed in microarray data from primary diseases control (Ct) and AS-bone-derived cells (BdCs) and in vitro experiments. Furthermore, the effect of ALP inhibitor was examined in both primary Ct- and AS-BdCs under osteoblast differentiation. Regulation of runt-related transcription factor 2 (RUNX2) by ALP was also analyzed.

RESULTS

Alkaline phosphatase level was higher in AS compared with RA and HC and was associated with radiograph progression. ALP expression was also enriched in the bone tissue of AS patients. Furthermore, AS-BdCs exhibited increasing ALP activity, leading to accelerated osteoblastic activity and differentiation. Intriguingly, inhibition of ALP reduced RUNX2 expression, a master transcriptional factor in osteoblasts, and differentiation status of both primary Ct- and AS-BdCs. Treatment of ALP activator or inhibitor modulated RUNX2 protein level and RUNX2 regulated ALP promoter activity, indicating a reciprocal ALP-RUNX2 positive feedback to regulate osteoblast differentiation.

CONCLUSIONS

Alkaline phosphatase was highly expressed in AS patients, may be involved in the ankylosis of AS, and represents a possible therapeutic target for ankylosis.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge