Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

boric acid/arabidopsis thaliana

Linkul este salvat în clipboard
ArticoleStudii cliniceBrevete
Pagină 1 din 27 rezultate
Plant nodulin-26 intrinsic proteins (NIPs) are members of the aquaporin superfamily that serve as multifunctional transporters of uncharged metabolites. In Arabidopsis thaliana, a specific NIP pore subclass, known as the NIP II proteins, is represented by AtNIP5;1 and AtNIP6;1, which encode channel

Isolation of Arabidopsis thaliana cDNAs that confer yeast boric acid tolerance.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
An Arabidopsis thaliana cDNA library was introduced into a Saccharomyces cerevisiae mutant that lacks ScBOR1 (YNL275W), a boron (B) efflux transporter. Five cDNAs were identified that confer tolerance to high boric acid. The nucleotide sequence analysis identified the clones as a

Establishment of genetically encoded biosensors for cytosolic boric acid in plant cells.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Boron (B) is an essential micronutrient for plants. To maintain B concentration in tissues at appropriate levels, plants use boric acid channels belonging to the NIP subfamily of aquaporins and BOR borate exporters. To regulate B transport, these transporters exhibit different cell-type specific

Permeability of boric acid across lipid bilayers and factors affecting it.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Boron enters plant roots as undissociated boric acid (H(3)BO(3)). Significant differences in B uptake are frequently observed even when plants are grown under identical conditions. It has been theorized that these differences reflect species differences in permeability coefficient of H(3)BO(3)

OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Boron is an essential micronutrient for higher plants. Boron deficiency is an important agricultural issue because it results in loss of yield quality and/or quantity in cereals and other crops. To understand boron transport mechanisms in cereals, we characterized OsNIP3;1, a member of the major

Nodulin Intrinsic Protein 7;1 Is a Tapetal Boric Acid Channel Involved in Pollen Cell Wall Formation.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Boron is an essential plant micronutrient that plays a structural role in the rhamnogalacturonan II component of the pectic cell wall. To prevent boron deficiency under limiting conditions, its uptake, distribution, and homeostasis are mediated by boric acid transporters and channel proteins. Among

Signaling from an altered cell wall to the nucleus mediates sugar-responsive growth and development in Arabidopsis thaliana.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Sugars such as glucose function as signal molecules that regulate gene expression, growth, and development in plants, animals, and yeast. To understand the molecular mechanisms of sugar responses, we isolated and characterized an Arabidopsis thaliana mutant, high sugar response8 (hsr8), which

Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Nutrient deficiency in soil poses a widespread agricultural problem. Boron (B) is an essential micronutrient in plants, and its deficiency causes defects in both vegetative and reproductive growth in various crops in the field. In Arabidopsis thaliana, increased expression of a major borate

Highly boron deficiency-tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Boron (B) is an essential element for plants, and B deficiency is a worldwide agricultural problem. In B-deficient areas, B is often supplied as fertilizer, but excess B can be toxic to both plants and animals. Generation of B deficiency-tolerant plants could reduce B fertilizer use. Improved

NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Boron (B) in soil is taken up by roots through NIP5;1, a boric acid channel, and is loaded into the xylem by BOR1, a borate exporter. Here, the function of Arabidopsis thaliana NIP6;1, the most similar gene to NIP5;1, was studied. NIP6;1 facilitates the rapid permeation of boric acid across the

Pollen-Specific Aquaporins NIP4;1 and NIP4;2 Are Required for Pollen Development and Pollination in Arabidopsis thaliana.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
In flowers with dry stigmas, pollen development, pollination, and pollen tube growth require spatial and temporal regulation of water and nutrient transport. To better understand the molecular mechanisms involved in reproductive processes, we characterized NIP4;1 and NIP4;2, two pollen-specific
Boron uptake in Arabidopsis thaliana is mediated by nodulin 26-like intrinsic protein 5;1 (NIP5;1), a boric acid channel that is located preferentially on the soil side of the plasma membrane in root cells. However, the mechanism underlying this polar localization is poorly understood. Here, we show

Optimization of conditions for germination of cold-stored Arabidopsis thaliana pollen.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
One of the rare weak points of the model plant Arabidopsis is the technical problem associated with the germination of its male gametophyte and the generation of the pollen tube in vitro. Arabidopsis pollen being tricellular has a notoriously low in vitro germination compared to species with

Methylboronic acid fertilization alleviates boron deficiency symptoms in Arabidopsis thaliana.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
UNASSIGNED Our results showed that methylboronic acid is capable of alleviating boron deficiency, enhancing plant growth, and is less toxic than boric acid at higher concentrations. Boron is an essential plant micronutrient and its deficiency occurs in several regions globally, resulting in impaired
Seed germination is a result of the competition of embryonic growth potential and mechanical constraint by surrounding tissues such as the endosperm. To understand the processes occurring in the endosperm during germination, we analyzed tiling array expression data on dissected endosperm and embryo
Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge