Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cyclopamine/hypoxia

Linkul este salvat în clipboard
ArticoleStudii cliniceBrevete
Pagină 1 din 21 rezultate
OBJECTIVE Outer root sheath (ORS) is a highly proliferative component of a hair follicle. This study is performed to investigate whether hypoxia-induced elevation of hypoxia-inducible factor (HIF)-1α, a transcriptional activator, contributes to the outgrowth of ORS cells in vitro. METHODS Hair

Silencing MEKK3 attenuates cardiomyocyte injury caused by hypoxia/reoxygenation via the sonic hedgehog pathway.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
MEKK3 is a member of MAP3K, which plays a pivotal role in cardiac diseases. In this study, we aimed to investigate the effects and potential mechanisms of MEKK3 on hypoxia/reoxygenation (H/R) injury of cardiomyocytes. After exposing H9C2 cells to H/R insult, real-time polymerase chain reaction and
Lung cancer remains the leading cause of cancer-related death, despite the advent of targeted therapies and immunotherapies. Therefore, it is crucial to identify novel molecular features unique to lung tumors. Here, we show that cyclopamine tartrate (CycT) strongly suppresses the growth of
Photodynamic therapy (PDT) has shown great promise in breast cancer treatment. However, simplex target ligand modification or stimuli release cannot meet the requirement of effective drug delivery to solid tumor tissue. To overcome continuous bio-barriers existing in the tumor microenvironment,

Sonic hedgehog regulates ischemia/hypoxia-induced neural progenitor proliferation.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
OBJECTIVE Sonic hedgehog (Shh) protein is required for the maintenance of neural progenitor cells (NPCs) in the embryonic and adult hippocampus. Brain ischemia causes increased proliferation of hippocampal NPCs. We therefore examined whether Shh regulates the increase in proliferation of NPCs after
The hedgehog signal pathway plays a crucial role in the angiogenesis and vascular remodeling. However, the function of this pathway in the pulmonary vascular smooth cell proliferation in response to hypoxia remains unknown. In this study, we have demonstrated that the main components of the hedgehog

Hypoxia-induced compensatory effect as related to Shh and HIF-1alpha in ischemia embryo rat heart.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Chronic cardiac ischemia/hypoxia induces coronary collateral formation and cardiomyocyte proliferation. Hypoxia can induce cellular adaptive responses, such as synthesis of VEGF for angiogenesis and IGF-2 for proliferation. Both reduce apoptotic effects to minimize injury or damage. To investigate
One major pathological hallmark of Alzheimer's disease (AD) is the accumulation of senile plaques mainly composed of neurotoxic amyloid beta-peptide (Aβ) in the patients' brains. Sonic hedgehog (SHH) is a morphogen critically involved in the embryonic development of the central nervous system (CNS).
BACKGROUND Hypoxia plays a vital role in cancer epithelial to mesenchymal transition (EMT) and invasion. However, it is not quite clear how hypoxia may contribute to these events. Here we investigate the role of Hedgehog (Hh) signaling in hypoxia induced pancreatic cancer EMT and
OBJECTIVE Hypoxic microenvironment, a common feature of hepatocellular carcinoma (HCC), can induce HIF-1α expression and promote the epithelial-mesenchymal transition (EMT) and invasion of cancer cells. However, the underlying molecular mechanisms have not fully elucidated. METHODS HCC cells were
Aberrant activation of Sonic Hedgehog (SHH) pathway has been implicated in a variety of cancers including cholangiocarcinoma (CC); however, the influencing factors are still unknown. Additionally, intratumoral hypoxia is known to contribute towards therapeutic resistance through modulatory effects
Immunotherapy using monocyte derived dendritic cells (Mo-DCs) from cancer patients has been developed; however, the Mo-DCs regularly studied have been derived from non-cancer bearing donors or mice, and evaluated in normoxic conditions. In the present study, we investigated the effects of Hedgehog
OBJECTIVE Expansion and maintenance of human embryonic stem cells (hESCs) in undifferentiated state is influenced by complex signals in the microenvironment, including those contingent upon oxygen availability. Responses mediated by Notch and Hedgehog (Hh) have essential role in the growth and

Blockade of the sonic hedgehog signalling pathway inhibits choroidal neovascularization in a laser-induced rat model.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Sonic hedgehog (Shh) signaling has recently been shown to be involved in the pathological angiogenesis in response to tissue hypoxia and ischemic injury. Hypoxia/ischemia is considered to play an important role in the development of choroidal neovascularization (CNV). This study was aimed to examine
Transplantation of umbilical cord blood mononuclear cells (UCBMC) promotes the proliferation of endogenous neural stem cells (NSCs), but it has been unclear whether the proliferating NSCs can differentiate into mature neural cells. Therefore, we explored the effects of UCBMC transplantation on the
Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge