Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

methionine sulfoxide/inflamație

Linkul este salvat în clipboard
ArticoleStudii cliniceBrevete
Pagină 1 din 74 rezultate
In this study we investigated the effect of acute and chronic treatment with Met and/or methionine sulfoxide (MetO) on ectonucleotidases and cholinesterases activities from lymphocytes and purine derivatives compounds, C-protein reactive, interleukin-10, interleukin-6, and tumor necrosis factor-α
Curcumin is the well-known compound which is extracted from turmeric powder, the dried rhizome of the Curcuma longa Linn. This have been used for the treatment of various disorders including inflammation. In this study we have analyzed the effect of curcumin on arthritis induced by
Methionine sulfoxide reductase A (MsrA), which stereospecifically catalyzes the reduction of methionine-S-sulfoxide, is an important reactive oxygen species (ROS) scavenger. Tissue fibrosis is a maladaptive repair process following injury, associated with oxidative stress. In this study, we
Hypermethioninemia is a disorder characterized by high plasma levels of methionine (Met) and its metabolites such as methionine sulfoxide (MetO). Studies have reported associated inflammatory complications, but the mechanisms involved in the pathophysiology of hypermethioninemia are still uncertain.

Hepatic overexpression of methionine sulfoxide reductase A reduces atherosclerosis in apolipoprotein E-deficient mice.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Methionine sulfoxide reductase A (MsrA), a specific enzyme that converts methionine-S-sulfoxide to methionine, plays an important role in the regulation of protein function and the maintenance of redox homeostasis. In this study, we examined the impact of hepatic MsrA overexpression on lipid

Thioredoxins and Methionine Sulfoxide Reductases in the Pathophysiology of Pneumococcal Meningitis.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Pneumococcal proteins involved in the resistance against oxidative stress are present in all strains and therefore are potential antigens that could be suitable for new therapies and/or vaccines. Their role in the pathogenesis of pneumococcal meningitis has not been addressed. We investigated the

Experimental pulmonary inflammatory injury in the monkey.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Inflammatory pulmonary injury was induced in Macaca mulatta rhesus monkeys by the intrabronchial instillation of the formylated peptide norleu-leu-phe (FNLP) or phorbol myristate acetate (PMA). Indicators of pulmonary injury included an increase in mean protein content of bronchoalveolar lavage

Mapping nitro-tyrosine modifications in fibrinogen by mass spectrometry as a biomarker for inflammatory disease.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
There is a growing awareness that inflammatory diseases have an oxidative pathology, which can result in specific oxidation of amino acids within proteins. It is known that patients with inflammatory disease have higher levels of plasma protein nitro-tyrosine than healthy controls. Fibrinogen is an
Actinobacillus actinomycetemcomitans is an oral pathogen that is a causative agent for periodontal disease as well as other non-oral infections. The chronic inflammation associated with periodontal diseases suggests that the bacterium must be able to neutralize oxygen intermediates to survive in the

Oxidation of human plasma fibronectin by inflammatory oxidants perturbs endothelial cell function.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Dysfunction of endothelial cells of the artery wall is an early event in cardiovascular disease and atherosclerosis. The cause(s) of this dysfunction are unresolved, but accumulating evidence suggests that oxidants arising from chronic low-grade inflammation are contributory agents, with increasing

Reduction of Sulindac to its active metabolite, sulindac sulfide: assay and role of the methionine sulfoxide reductase system.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Sulindac is a known anti-inflammatory drug that functions by inhibition of cyclooxygenases 1 and 2 (COX). There has been recent interest in Sulindac and other non-steroidal anti-inflammatory drugs (NSAID) because of their anti-tumor activity against colorectal cancer. Studies with sulindac have

Synergistic roles of Helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Hypochlorous acid (HOCl) produced via the enzyme myeloperoxidase is a major antibacterial oxidant produced by neutrophils, and Met residues are considered primary amino acid targets of HOCl damage via conversion to Met sulfoxide. Met sulfoxide can be repaired back to Met by methionine sulfoxide
High-density lipoprotein (HDL), a well-known atheroprotective factor, can be converted to proatherogenic particles in chronic inflammation. HDL-targeted therapeutic strategy for atherosclerotic cardiovascular disease (CVD) is currently under development. This study aims to assess the role of
An enhanced formation of reactive oxygen species and peroxynitrite occurs in several clinical settings including diabetes, coronary artery disease, stroke, sepsis, and chronic inflammatory diseases. Peroxynitrite oxidizes methionine and tyrosine residues to methionine sulfoxide (MetSO) and

PEP-1-MsrA ameliorates inflammation and reduces atherosclerosis in apolipoprotein E deficient mice.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
BACKGROUND Methionine sulfoxide reductase A (MsrA) is a potent intracellular oxidoreductase and serves as an essential factor that protects cells against oxidative damage. However, therapeutic use of exogenous MsrA in oxidative stress-induced diseases is limited, because it cannot enter the cells.
Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge