Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

udp xylose/arabidopsis thaliana

Linkul este salvat în clipboard
ArticoleStudii cliniceBrevete
Pagină 1 din 18 rezultate

Biosynthesis of UDP-xylose: characterization of membrane-bound AtUxs2.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
UDP-xylose (UDP-Xyl) is a sugar donor for the synthesis of glycoproteins, polysaccharides, various metabolites, and oligosaccharides in plants, vertebrates, and fungi. In plants, the biosynthesis of UDP-Xyl from UDP-glucuronic acid (UDP-GlcA) appears to be catalyzed by numerous UDP-glucuronic acid

Probing of the reaction pathway of human UDP-xylose synthase with site-directed mutagenesis.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Uridine 5'-diphosphate (UDP)-xylose (UDP-Xyl) synthase (UXS) catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-Xyl. The closely related UDP-glucuronic acid 4-epimerase (UGAE) interconverts UDP-GlcUA and UDP-galacturonic acid (UDP-GalUA) in a highly similar manner via

Molecular cloning and functional expression of beta1, 2-xylosyltransferase cDNA from Arabidopsis thaliana.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
The transfer of xylose from UDP-xylose to the core beta-linked mannose of N-linked oligosaccharides by beta1,2-xylosyltransferase (XylT) is a widespread feature of plant glycoproteins which renders them immunogenic and allergenic in man. Here, we report the isolation of the Arabidopsis thaliana XylT
The synthesis of noncellulosic polysaccharides and glycoproteins in the plant cell Golgi apparatus requires UDP-galactose as a substrate. We have cloned and characterized a nucleotide sugar transporter from Arabidopsis thaliana (L.) Heynh. named AtUTr2. Expression in tobacco and Saccharomyces
The synthesis of non-cellulosic polysaccharides and glycoproteins in the plant cell Golgi apparatus requires UDP-galactose as substrate. The topology of these reactions is not known, although the orientation of a plant galactosyltransferase involved in the biosynthesis of galactomannans in fenugreek

Cytosol-Localized UDP-Xylose Synthases Provide the Major Source of UDP-Xylose for the Biosynthesis of Xylan and Xyloglucan.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Xylan and xyloglucan are the two major cell wall hemicelluloses in plants, and their biosynthesis requires a steady supply of the sugar donor, UDP-xylose. UDP-xylose is synthesized through conversion of UDP-glucuronic acid (UDP-GlcA) by the activities of UDP-xylose synthase (UXS). There exist six

Identification and Characterization of a Golgi-Localized UDP-Xylose Transporter Family from Arabidopsis.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Most glycosylation reactions require activated glycosyl donors in the form of nucleotide sugars to drive processes such as posttranslational modifications and polysaccharide biosynthesis. Most plant cell wall polysaccharides are biosynthesized in the Golgi apparatus from cytosolic-derived nucleotide
To identify candidate genes involved in Arabidopsis flavonoid biosynthesis, we applied transcriptome coexpression analysis and independent component analyses with 1388 microarray data from publicly available databases. Two glycosyltransferases, UGT79B1 and UGT84A2 were found to cluster with
UDP-D-glucuronic acid and UDP-D-xylose are required for the biosynthesis of glycosaminoglycan in mammals and of cell wall polysaccharides in plants. Given the importance of these glycans to some organisms, the development of a system for production of UDP-D-glucuronic acid and UDP-D-xylose from a

Quantitative HPLC-MS analysis of nucleotide sugars in plant cells following off-line SPE sample preparation.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
An analytical workflow was developed for the absolute quantification of uridine diphosphate (UDP)-sugars in plant material in order to compare their metabolism both in wild-type Arabidopsis thaliana and mutated plants (ugd2,3) possessing genetic alterations within the UDP-glucose dehydrogenase genes

Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific

Antisense expression of Gossypium hirsutum UDP-glucuronate decarboxylase in Arabidopsis leads to changes in cell wall components.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
UDP-glucuronate decarboxylase (UDP-xylose synthase; UXS, EC 4.1.1.35) is an essential enzyme of the non-cellulosic polysaccharide biosynthetic pathway. In the present study, using transient expression of fluorescently labeled Gossypium hirsutum UXS (GhUXS3) protein in onion epidermal cells, we
Flavonoids, which comprise a large family of secondary plant metabolites, have received increased attention in recent years due to their wide range of features beneficial to human health. One of the most abundant flavonoid skeletons in citrus species is the flavanone naringenin, which is accumulated

Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Xyloglucan (XyG) is the principal hemicellulose found in the primary cell walls of most plants. XyG is composed of a beta-(1,4)-glucan backbone that is substituted in a regular pattern with xylosyl residues, which are added by at least one and likely two or three xylosyltransferase (XT) enzymes.

Family 34 glycosyltransferase (GT34) genes and proteins in Pinus radiata (radiata pine) and Pinus taeda (loblolly pine).

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Using a functional genomics approach, four candidate genes (PtGT34A, PtGT34B, PtGT34C and PtGT34D) were identified in Pinus taeda. These genes encode CAZy family GT34 glycosyltransferases that are involved in the synthesis of cell-wall xyloglucans and heteromannans. The full-length coding sequences
Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge