Russian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomedical Informatics 2017-May

Towards generalizable entity-centric clinical coreference resolution.

Только зарегистрированные пользователи могут переводить статьи
Войти Зарегистрироваться
Ссылка сохраняется в буфер обмена
Timothy Miller
Dmitriy Dligach
Steven Bethard
Chen Lin
Guergana Savova

Ключевые слова

абстрактный

This work investigates the problem of clinical coreference resolution in a model that explicitly tracks entities, and aims to measure the performance of that model in both traditional in-domain train/test splits and cross-domain experiments that measure the generalizability of learned models.

The two methods we compare are a baseline mention-pair coreference system that operates over pairs of mentions with best-first conflict resolution and a mention-synchronous system that incrementally builds coreference chains. We develop new features that incorporate distributional semantics, discourse features, and entity attributes. We use two new coreference datasets with similar annotation guidelines - the THYME colon cancer dataset and the DeepPhe breast cancer dataset.

The mention-synchronous system performs similarly on in-domain data but performs much better on new data. Part of speech tag features prove superior in feature generalizability experiments over other word representations. Our methods show generalization improvement but there is still a performance gap when testing in new domains.

Generalizability of clinical NLP systems is important and under-studied, so future work should attempt to perform cross-domain and cross-institution evaluations and explicitly develop features and training regimens that favor generalizability. A performance-optimized version of the mention-synchronous system will be included in the open source Apache cTAKES software.

Присоединяйтесь к нашей
странице facebook

Самая полная база данных о лекарственных травах, подтвержденная наукой

  • Работает на 55 языках
  • Травяные лекарства, подтвержденные наукой
  • Распознавание трав по изображению
  • Интерактивная карта GPS - отметьте травы на месте (скоро)
  • Прочтите научные публикации, связанные с вашим поиском
  • Ищите лекарственные травы по их действию
  • Организуйте свои интересы и будьте в курсе новостей исследований, клинических испытаний и патентов

Введите симптом или заболевание и прочтите о травах, которые могут помочь, введите лекарство и узнайте о болезнях и симптомах, против которых оно применяется.
* Вся информация основана на опубликованных научных исследованиях.

Google Play badgeApp Store badge