4 полученные результаты
Red pine (Pinus resinosa Ait.) and paper birch (Betula papyrifera Marsh.) seedlings exposed to sulfur dioxide produced acetaldehyde and ethanol, and exhibited increased production of ethylene and ethane. Gas chromatographic measurement of head space gas from incubation tubes containing leaves or
Tree stems are an overlooked source of volatile organic compounds (VOCs). Their contribution to ecosystem processes and total VOC fluxes is not well studied, and assessing it requires better understanding of stem emission dynamics and their driving processes. To gain more mechanistic insight into
Increasing nitrogen (N) deposition is one of the main drivers of global change, while the emission of biogenic volatile organic compounds (BVOCs) from plant in response to elevated N deposition is poorly understood, especially with respect to the response to foliar application of N. In this study,
Most plant-based emissions of volatile organic compounds are considered mainly temperature dependent. However, certain oxygenated volatile organic compounds (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility