6 полученные результаты
Crude, Sephadex-filtered extracts of soybean (Glycine max (L.) Merr.) root nodules contained invertase (E.C. 3.2.1.26) activity with pH optima at 5.4 and 7.8, α,α-trehalase (E.C. 3.2.1.28) activity with pH optima at 3.8 and 6.6, and maltase (E.C. 3.2.1.20) activity with a broad pH optimum between
Metabolism of trehalose, alpha,d-glucopyranosyl-alpha,d-glucopyranoside, was studied in nodules of Bradyrhizobium japonicum-Glycine max [L.] Merr. cv Beeson 80 symbiosis. The nodule extract was divided into three fractions: bacteroid soluble protein, bacteroid fragments, and cytosol. The bacteroid
The metabolism of translocated photosynthate by soybean (Glycine max L. Merr.) nodules was investigated by (14)CO(2)-labeling studies and analysis of nodule enzymes. Plants were exposed to (14)CO(2) for 30 minutes, followed by (12)CO(2) for up to 5 hours. The largest amount of radioactivity in
During the first few days of nitrogen fixation activity by soybean (Glycine max (L.) Merr) root nodules, d-chiro-inositol, myo-inositol, sucrose, alpha,alpha-trehalose, and maltose accumulate rapidly and reach concentrations several fold greater than concentrations in other plant organs.
Metabolites in Bradyrhizobium japonicum bacteroids and in Glycine max (L.) Merr. cytosol from root nodules were analyzed using an isolation technique which makes it possible to estimate and correct for changes in concentration which may occur during bacteroid isolation. Bacteroid and cytosol
OBJECTIVE
A major reason for the ineffectiveness of legume inoculants in the field is the rapid death of rhizobia because of desiccation. The major purpose of this study was to identify conditions under which alpha,alpha-trehalose would improve survival of Bradyrhizobium japonicum during