Страница 1 от 25 полученные результаты
Dihydromyricetin (DMY), extracted from the Chinese herbal medicine Ampelopsis grossedentata, possesses antitumor potential in different types of human cancer cells. Hence, its effects on drug resistance and molecular mechanisms in colorectal cancer (CRC) are still unknown. In our present study, we
Numerous patients with osteosarcoma either are not sensitive to chemotherapy or develop drug resistance to current chemotherapy regimens. Therefore, it is necessary to develop several potentially useful therapeutic agents. Dihydromyricetin is the major flavonoid component derived from Ampelopsis
A water-soluble polysaccharide named as AMP was isolated and purified from the leaves of Ampelopsis megalophylla by DEAE-52 Cellulose and Sephadex G-100 column chromatography. AMP had an average molecular weight of about 8.4 × 10(4)Da and was composed of galactose (Gal), mannose (Man), glucose
To investigate the underlying mechanism of Bailian (Radix Ampelopsis Japonicae, BL) extract action on colorectal cancer (CRC).We explored the involvement of β-catenin signaling on the anti-CRC effects of an BL ethanolic extract (BLE) in cell models by using Ampelopsin (AMP), a major bioactive constituent of Ampelopsis grossedentata, exerts a number of biological effects. In this study, we investigated its anti-cancer activity in human breast cancer cell lines, and explored the underlying mechanism of this action. Our results showed that treatment with
Dihydromyricetin (DMY), the major bioactive flavonoid ingredient extracted from the leaves of Ampelopsis grossedentata (Hand.-Mazz) W.T. Wang, displays multiple pharmacological activities, including oxidation resistance, antitumor properties and free radical scavenging capacities. However, the role
Dihydromyricetin (DHM), a natural flavonoid derived from the medicinal and edible plant Ampelopsis grossedentata, exhibits antioxidant, antiapoptosis, antitumor, and anti-inflammatory bioactivities. This study evaluated the effects of DHM on Pb-induced neurotoxicity and explored the underlying
Ampelopsis japonica (AJ) is a well‑known traditional oriental herb with anti‑inflammatory and anticancer activities. However, the molecular mechanisms by which AJ inhibits metastasis in breast cancer cells remain to be elucidated. The aim of the present study was to investigate the effects of AJ
Dihydromyricetin (DHM) is a bioactive flavonoid compound extracted from the stems and leaves of Ampelopsis grossedentata. Previous studies have indicated that DHM has antioxidation and antitumor capabilities, while the effect of DHM on lipopolysaccharide (LPS)‑induced cardiomyocyte injury has not
Previous studies have demonstrated that ampelopsin (AMP), a type of flavonoid isolated from the stems and leaves of Ampelopsis grossedentata, exhibits anti-cancer activity in various types of cancer. Conversion of AMP into its sodium salt (AMP-Na) conferred enhanced solubility and stability
Ampelopsin (AMP) is an active ingredient of flavonoid compounds that is extracted from Ampelopsis megalophylla Diels et Gilg. The present study aimed at investigating the antitumor activities of AMP and the possible underlying molecular mechanisms in HeLa cells. A total of three types of tumor cell
Dihydromyricetin (DMY), a flavanonol compound found as the most abundant and bioactive constituent in Ampelopsis grossedentata (Hand-Mazz) W.T. Wang, possesses numerous pharmacological activities, such as antioxidant, anti-inflammation, anticancer, anti-microbial, hypoglycemic and hypolipidemic
Dihydromyricetin (DMY or DHM), also known as ampelopsin, is the main natural flavonol compound extracted from the plant Ampelopsis grossedentata (Hand. -Mazz) W.T. Wang. In recent years, accumulating studies have been conducted to explore the extensive biological functions of DMY, including
Dihydromyricetin (DHM), the major bioactive flavonoid ingredient extracted from the leaves of Ampelopsis grossedentata (Hand.-Mazz) W.T. Wang displays multiple pharmacological activities, including oxidation resistance, anti-tumour properties and free radical scavenging capacities. However, the role
Dihydromyricetin (DHM), a bioactive flavonoid compound extracted from the stems and leaves of Ampelopsis grossedentata, has oxidation resistance, anti-tumor and free radical scavenging capabilities. In this study, we found that DHM-induced autophagy inhibited the cell proliferation in HepG2 cells.