Страница 1 от 131 полученные результаты
CONCLUSIONS
This manuscript reports the fine mapping of a novel QTL, qAC2 controlling the low amylose in rice. The action mechanism of the qAC2 is also investigated by the analysis of genetic interactions to Wx (a), Wx (b), du1, du2 and du3. Amylose content of the rice (Oryza sativa L.) endosperm
Sequence-based variations in starch synthesis-related genes (SSRGs) exert a basic influence on the determination of eating quality in rice (Oryza sativa L.). This study aimed to investigate the relationship between the sequence variations from parts of 10 SSRGs and the amylose content (AC) plus
The sticky rice of Assam is traditionally classified as bora (glutinous) and chokuwa (semi-glutinous) based on their stickiness after cooking. The Waxy (Wx) gene encodes for granule-bound starch synthase (GBSS) that controls the synthesis of amylose, which is a key determinant of rice end-use
CONCLUSIONS
We obtained interesting results for genetic analysis and molecular mapping of the du12(t) gene. Control of the amylose content in rice is the major strategy for breeding rice with improved quality. In this study, we conducted genetic analysis and molecular mapping to identify the dull
Starch is the major component of milled rice, and amylose content (AC) affects eating quality. In this study, a genome-wide association study (GWAS) with specific-locus amplified fragment sequencing (SLAF-seq) data was performed for AC on a core collection of 419 rice landraces. Using the compressed
Eight dull mutants that lower the amylose content of rice endosperm as well as waxy mutant and a cultivar with common grains were crossed in a diallele manner. The amylose content of F1 and F2 seeds was determined on the basis of single grain analysis. It was concluded that the low amylose content
Starch, composed of amylose and amylopectin, greatly influences rice cooking and textural quality, which in turn is controlled by various isoforms of several enzymes. Activity of one or more isoforms of starch-synthesizing enzymes results in various forms of starch structure based on the amylopectin
Improving the gelatinization temperature (GT), gel consistency (GC) and amylose content (AC) for parental grain eating and cooking qualities (ECQs) are key factors for enhancing average grain ECQs for hybrid japonica rice.In this study, a genome-wide In this study, we determined using NIRS the heritability percentage of amylose, protein, and moisture content in polished and unpolished rice in a CNDH population derived from a cross between Cheongcheong and Nagdong rice varieties. The results revealed a higher heritability percentage for the
Five mutant lines of rice with increased amylose content in starch granules were identified among floury endosperm mutants. The amylose contents of the mutants ranged from 29.4% to 35.4% and were about twice as high as that of the normal counterpart. Starch properties of the high amylose mutants
The rice Waxy (Wx) gene encodes granule-bound starch synthase 1 (EC 2.4.1.242), OsGBSS1, which is responsible for amylose synthesis in rice seed endosperm. In this study, we determined the functional contribution of eight amino acids on the activity of OsGBSS1 by introducing site-directed mutated Wx
The appearance and cooking quality of rice determine its acceptability and price to a large extent. Quantitative trait loci (QTLs) for 12 grain quality traits were mapped in 2 mapping populations derived from Oryza sativa cv Swarna × O. nivara. The BC(2)F(2) population of the cross Swarna × O.
Through genetic transformation mediated by Agrobacterium tumefaciens, an antisense waxy gene was introduced into Longtefu B line, a male sterile maintainer line in indica (Oryza sativa L.). Thirty transgenic plants showed integration of antisense waxy gene into the genome as determined by PCR assay,
A deeper understanding of the regulation of starch biosynthesis in rice (Oryza sativa) endosperm is crucial in tailoring digestibility without sacrificing grain quality. In this study, significant association peaks on chromosomes 6 and 7 were identified through a genomewide association study (GWAS)
Catalytically active indica SSIIa allele in high amylose rice with down-regulated japonica SBEIIb can increase starch content and modify the starch structure and properties without changing its amylose content. Rice (Oryza sativa) genotypes with inactive starch synthase IIa (SSIIa) with recessive