Страница 1 от 19 полученные результаты
Triterpene skeletons are produced by oxidosqualene cyclases (OSCs). The genome sequencing of Arabidopsis thaliana revealed the presence of thirteen OSC homologous genes including At1g78950, which has been revised recently as two independent ORFs, namely At1g78950 and At1g78955. The cDNA
An oxidosqualene cyclase cDNA, termed GgbAS1, was isolated from cultured cells of licorice (Glycyrrhiza glabra) by heterologous hybridization with cDNA of Arabidopsis thaliana LUP1 lupeol synthase. The yeast transformed with an expression vector containing the open reading frame of GgbAS1 produced
Cycloartenol is biosynthetically the first sterol skeleton, which is metabolized to phytosterols such as β-sitosterol and stigmasterol. β-Amyrin is the most commonly occurring aglycone skeleton for oleanane-type saponins such as glycyrrhizin and saikosaponins. It has been regarded that these cyclic
Plants prevent dehydration by coating their aerial, primary organs with waxes. Wax compositions frequently differ between species, organs, and developmental stages, probably to balance limiting nonstomatal water loss with various other ecophysiological roles of surface waxes. To establish
We establish by heterologous expression that the Arabidopsis thaliana oxidosqualene cyclase At1g78955 (CAMS1) makes camelliol C (98%), achilleol A (2%), and beta-amyrin (0.2%). CAMS1 is the first characterized cyclase that generates predominantly a monocyclic triterpene alcohol. Phylogenetic
Glycyrrhetinic acid (GA) is the most important ingredient in licorice due to its outstanding anti-inflammatory activity and wide application in the medicine and cosmetics industries. Contemporary industrial production of GA by acid hydrolysis of glycyrrhizin which was extracted from CONCLUSIONS
A novel plastidial homodimeric insect-plant geranyl pyrophosphate synthase gene is synthesized from three different cDNA origins. Its overexpression in Camelina sativa effectively alters plant development and terpenoid metabolism. Geranyl pyrophosphate synthase (GPPS) converts one
The Arabidopsis thaliana LUP1 gene encodes an enzyme that converts oxidosqualene to pentacyclic triterpenes. Lupeol and beta-amyrin were previously reported as LUP1 products. Further investigation described here uncovered the additional products germanicol, taraxasterol, psi-taraxasterol, and
A vast array of triterpenes are found in living organisms in addition to lanosterol and cycloartenol, which are involved in sterol biosynthesis in non-photosynthetic and photosynthetic eukaryotes respectively. The chemical structure of these triterpenes is determined by a single step catalysed by
The labdane-related diterpenoid, momilactone B has potent growth inhibitory activity and was demonstrated to play a particularly critical role in the allelopathy of rice (Oryza sativa L.). However, there is limited information available about the mode of action of momilactone B on the growth
A 2274 bp Arabidopsis thaliana cDNA was isolated that encodes a protein 57% identical to cycloartenol synthase from the same organism. The expressed recombinant protein encodes lupeol synthase, which converts oxidosqualene to the triterpene lupeol as the major product. Lupeol synthase is a
Two new triterpene synthase cDNAs, named as OEW and TRW, were cloned from olive leaves (Olea europaea) and from dandelion roots (Taraxacum officinale), respectively, by the PCR method with primers designed from the conserved sequences found in the known oxidosqualene cyclases. Their ORFs consisted
Catharanthus roseus is an important medicinal plant and the sole commercial source of monoterpenoid indole alkaloids (MIA), anticancer compounds. Recently, triterpenoids like ursolic acid and oleanolic acid have also been found in considerable amounts in C. roseus leaf cuticular wax layer. These
At1g78500, one of the oxidosqualene cyclase (OSC) homologues from Arabidopsis thaliana, was expressed in a lanosterol synthase-deficient yeast strain and the products were analyzed. In addition to the known triterpenes, this OSC was found to produce two new triterpenes, the structures of which were
Triterpenoids have diverse chemical structures and bioactivities. Cytochrome P450 monooxygenases play a key role in their structural diversification. In higher plants, CYP716A subfamily enzymes are triterpene oxidases. In this study, Arabidopsis thaliana CYP716A1 and CYP716A2 were characterized by