15 полученные результаты
We report on a patient with muscle pain not associated with muscle weakness. Microscopic examination of the muscle biopsy revealed rod-like cytoplasmic bodies in many fast fibres. By electron microscopy these had a crystalloid structure identical to the hexagonally cross-linked caveolin 3-positive
Current fluorescent monitors of free [Ca(2+)] in the sarcoplasmic reticulum (SR) of skeletal muscle cells are of limited quantitative value. They provide either a nonratio signal that is difficult to calibrate and is not specific or, in the case of Forster resonant energy transfer (FRET) biosensors,
CONCLUSIONS
Mutations in the gene encoding poly(A)-binding protein nuclear 1 (PABPN1) result in oculopharyngeal muscular dystrophy (OPMD). This disease is of late-onset, but the underlying mechanism is unclear. Ca2+ stimulates muscle growth and contraction and, because OPMD courses with muscle
A missense mutation in the calsequestrin-1 gene (CASQ1) was found in a group of patients with a myopathy characterized by weakness, fatigue, and the presence of large vacuoles containing characteristic inclusions resulting from the aggregation of sarcoplasmic reticulum (SR) proteins. The mutation
Myasthenia gravis is an organ-specific autoimmune disorder generally thought to be caused by an antibody-mediated attack against the skeletal muscle nicotinic acetylcholine (Ach) receptor (AchR) at the neuromuscular junction. Extraocular muscle weakness and double vision are present in about 90% of
OBJECTIVE
To identify and characterize patients with calsequestrin 1 (CASQ1)-related myopathy.
METHODS
Patients selected according to histopathologic features underwent CASQ1 genetic screening. CASQ1-mutated patients were clinically evaluated and underwent muscle MRI. Vacuole morphology and
Genetic mutations that affect mitochondrial function often cause skeletal muscle dysfunction. Here, we used mice with skeletal-muscle-specific disruption of the nuclear gene for mitochondrial transcription factor A (Tfam) to study whether changes in cellular Ca(2+) handling is part of the mechanism
In skeletal muscle, Ca(2+)-cycling through the sarcoplasm regulates the excitation-contraction-relaxation cycle. Since uncoupling between sarcolemmal excitation and fibre contraction may play a key role in the functional decline of aged muscle, this study has evaluated the expression levels of key
In the last decades the term Store-operated Ca2+ entry (SOCE) has been used in the scientific literature to describe an ubiquitous cellular mechanism that allows recovery of calcium (Ca2+) from the extracellular space. SOCE is triggered by a reduction of Ca2+ content
CONCLUSIONS
Muscle weakness in old age is due in large part to an overall loss of skeletal muscle tissue, but it remains uncertain how much also stems from alterations in the properties of the individual muscle fibres. This study examined the contractile properties and amount of stored intracellular
Alcoholic myopathy is characterized by muscle weakness and difficulties in gait and locomotion. It is one of the most prevalent skeletal muscle disorders in the Western hemisphere, affecting between 40% and 60% of all chronic alcohol misusers. However, the pathogenic mechanisms are unknown, although
Although the primary abnormality in dystrophin is the underlying cause for mdx (X-chromosome-linked muscular dystrophy), abnormal Ca2+ handling after sarcolemmal microrupturing appears to be the pathophysiological mechanism leading to muscle weakness. To develop novel pharmacological strategies for
Mutations in the RYR1 gene cause severe myopathies. Mice with an I4895T mutation in the type 1 ryanodine receptor/Ca2+ release channel (RyR1) display muscle weakness and atrophy, but the underlying mechanisms are unclear. Here we show that the I4895T mutation in RyR1 decreases the amplitude of the
Calcium (Ca2+) is a key regulator for a large number of cellular functions in all kinds of cells, and small disturbances of Ca2+ homeostasis can severely compromise normal physiology in various tissues and organs. A major mechanism controlling Ca2+ homeostasis is store-operated Ca2+ entry (SOCE),
Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice