Страница 1 от 56 полученные результаты
Mold spoilage is the main cause of substantial economic loss in cereals and might also cause public health problems due to the production of mycotoxins. The aim of this study was to separate and purify and to identify antifungal compounds of bacterium associated with novel entomopathogenic nematode
Soil microorganisms exhibit varying levels of metal tolerance across a diverse range of environmental conditions. The use of metal-based fungicides such as mancozeb and copper oxychloride could potentially result in increased levels of manganese, zinc and copper which may adversely affect soil
Dithiocarbamate fungicides such as maneb and mancozeb are widely used nonsystemic protectant fungicides to control various plant fungal diseases. Dithiocarbamate fungicides should be frequently applied to achieve optimal efficacy of disease control and avoid either decline in effectiveness or
An antifungal metabolite, bacereutin, was isolated from culture filtrate of Bacillus cereus CHU 130. The bacterium was isolated from soils collected in Changhwa County, Taiwan, and was grown in soybean meal-mannitol broth for production of the antibiotic metabolite. The antibiotic metabolite was
OBJECTIVE
This study was performed to isolate and characterize novel antifungal lipopeptide from Bacillus cereus.
RESULTS
Elucidation of its chemical structure was carried out by electrospray ionization mass spectra (ESI-MS) and Fourier transform infrared spectroscopy (FT-IR). The compound is a
In previous study, we isolated an antagonist Bacillus cereus strain: S-1 from cotton plant. In field experiments, this bacterium was shown strong inhibition to several plant diseases. In this paper, we reported the purification of the antifungal substance produced by the bacterium and its
The rhabditid entomopathogenic nematode associated Bacillus cereus and the antifungal compounds produced by this bacterium were evaluated for their activity in reducing postharvest decay of peanut kernels caused by Aspergillus species in in vitro and in vivo tests. The results showed that B. cereus
The production of inexpensive chitinolytic enzymes is an element in the utilization of shellfish processing wastes. In this study, shrimp and crab shell powder prepared by treating shrimp and crab processing wastes with boiling and crushing was used as a substrate for the isolation of an antifungal
Bacillus cereus QQ308 produced antifungal hydrolytic enzymes, comprising chitinase, chitosanase and protease, when grown in a medium containing shrimp and crab shell powder (SCSP) produced from marine waste. The growth of the plant-pathogenic fungi Fusarium oxysporum, Fusarium solani, and Pythium
Two new quinazolinones alkaloids, R(+)-2-(heptan-3-yl)quinazolin-4(3H)-one (1) and (2R,3'R)+(2S,3'R)-2-(heptan-3-yl)-2,3-dihydroquinazolin-4(1H)-one (2) (a pair of epimers), as well as seven known analogues, 2-methylquinazolin-4(3H)-one (3), 2-benzylquinazolin-4(3H)-one (4), cyclo-(Pro-Ile),
The cell-free culture filtrate of Bacillus cereus subsp. thuringiensis associated with an entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography
Bacillus cereus 28-9 is a chitinolytic bacterium isolated from lily plant in Taiwan. This bacterium exhibited biocontrol potential on Botrytis leaf blight of lily as demonstrated by a detached leaf assay and dual culture assay. At least two chitinases (ChiCW and ChiCH) were excreted by B. cereus
In this study, the fungistatic activity of Bacillus cereus cereulide-producing strains was demonstrated against nine fungal species. The role of cereulide was confirmed using plasmid-cured derivatives and ces knockout mutants. The fungistatic spectra of cereulide and valinomycin, a chemically
A peptide was obtained from culture filtrates of a bacterium which was newly isolated and tentatively named Bacillus cereus SW. The peptide was composed of Asx, Ser, Glx, Leu, Tyr, Pro, and an unknown amino acid in a ratio of 2:1:1:1:1:1:1, but, unless hydrolyzed with HCI, it was ninhydrin reaction