Страница 1 от 943 полученные результаты
To investigate the contribution of farnesyl diphosphate synthase (FPS) to the overall control of the mevalonic acid pathway in plants, we have generated transgenic Arabidopsis thaliana overexpressing the Arabidopsis FPS1S isoform. Despite high levels of FPS activity in transgenic plants (8- to
The plant hormones cytokinins (CKs) regulate multiple developmental and physiological processes in Arabidopsis (Arabidopsis thaliana). Responses to CKs vary in different organs and tissues (e.g. the response to CKs has been shown to be opposite in shoot and root samples). However, the
The plant hormone cytokinin is a key morphogenic factor controlling cell division and differentiation, and thus the formation and growth rate of organs during a plant's life cycle. In order to explore the relevance of cytokinin during the initial phase of leaf primordia formation and its impact on
The catabolism of cytokinins is a vital component of hormonal regulation, contributing to the control of active forms of cytokinins and their cellular distribution. The enzyme catalyzing the irreversible cleavage of N(6)-side chains from cytokinins is a flavoprotein classified as cytokinin
This study investigates the consequences of endogenously enhanced biosynthesis of the plant hormone cytokinin in Arabidopsis thaliana (L.) Heynh. Transcriptional control of the bacterial ipt gene by the Drosophila melanogaster hsp70 promoter enabled temperature-dependent increased cytokinin
Carbon availability is a major regulatory factor in plant growth and development. Cytokinins, plant hormones that play important roles in various aspects of growth and development, have been implicated in the carbon-dependent regulation of plant growth; however, the details of their involvement
In Arabidopsis thaliana, besides several key transcription factors and chromatin modifiers, phytohormones auxin and cytokinin play pivotal role in shoot and root meristem maintenance, and lateral root (LR) development. Sirtinol, a chemical inhibitor of Sir2 proteins, is known to promote some auxin
Increased-branching mutants of garden pea (Pisum sativum; ramosus [rms]) and Arabidopsis (Arabidopsis thaliana; more axillary branches) were used to investigate control of cytokinin export from roots in relation to shoot branching. In particular, we tested the hypothesis that regulation of xylem sap
Cytokinins promote cell division and chloroplast development in tissue culture. We previously isolated two mutants of Arabidopsis thaliana, ckh1 (cytokinin-hypersensitive 1) and ckh2, which produce rapidly growing green calli in response to lower levels of cytokinins than those found in the wild
UNASSIGNED
Cytokinin membrane receptors of the Arabidopsis thaliana AHK2 and AHK3 play opposite roles in the expression of plastid genes and genes for the plastid transcriptional machinery during leaf senescence Loss-of-function mutants of Arabidopsis thaliana were used to study the role of
Cytokinins are plant hormones involved in regulation of diverse developmental and physiological processes in plants whose molecular mechanisms of action are being intensely researched. However, most rapid responses to cytokinin signals at the proteomic and phosphoproteomic levels are unknown. Early
Results of recent studies on the model higher plant Arabidopsis thaliana have led us to learn about the generality and versatility of two-component systems (TCS) in eukaryotes. In the plant, TCS are crucially involved in certain signal transduction mechanisms underlying the regulation of plant
BACKGROUND
Although cytokinins have been known for decades to play important roles in the regulation of plant growth and development, our knowledge of the regulatory mechanism of endogenous content of specific cytokinins remains limited.
RESULTS
Here, we characterized two SOB five-like (SOFL) genes,
CONCLUSIONS
AtSKIP participated in cytokinin-regulated leaf initiation. Putative phosphorylated AtSKIP (AtSKIP (DD) ) displayed the opposite function in the leaf development from AtSKIP transgenic seedlings.
UNASSIGNED
AtSKIP, as a multiple protein, is involved in many physiological processes, such
Optimal root architecture is established by multiple intrinsic (e.g. hormones) and extrinsic (e.g. gravity and touch) signals and is established, in part, by directed root growth. We show that asymmetrical exposure of cytokinin (CK) at the root tip in Arabidopsis (Arabidopsis thaliana) promotes cell