Страница 1 от 16 полученные результаты
The synthesis of anthocyanins in higher plants involves many enzymatic steps. Here we describe the isolation and characterization of a cDNA, ant17, which encodes a protein that has 73% amino acid sequence identity with the candi gene product of Antirrhinum majus and 48% with that of the maize a2
Flavanone 3-hydroxylase (F3H) activity is necessary for the production of both flavonols and anthocyanins. Flavonols are required for functional pollen in maize whereas anthocyanins are non-essential pigments. A cDNA for F3H was isolated from Zea mays using a heterologous sequence from Antirrhinum
Naringenin is a flavanone that is believed to have many biological actions, including as an anti-oxidant, free radical scavenger and an antiproliferative agent. The global incidence of gastric carcinoma is increasing rapidly, more than for any other cancer. Therefore, in the present study, we tested
The regulatory anthocyanin loci, an1, an2, an4 and an11 of Petunia hybrida, and r and c1 from Zea mays, control transcription of different sets of target genes. Both an2 and c1 encode a MYB-type protein. This study reports the isolation of a P. hybrida gene, jaf13, encoding a basic helix-loop-helix
Identification of flavonoid 3'-monooxygenase establishes another reaction in the biosynthesis of flavonoid compounds in maize (Zea mays L.). The flavonoid 3'-hydroxylase was obtained as a microsomal enzyme preparation by buffer extraction of 5 day old maize seedlings and ultracentrifugation.
Plant diversity in experimental systems often enhances ecosystem productivity, but the mechanisms causing this overyielding are only partly understood. Intercropping faba beans (Vicia faba L.) and maize (Zea mays L.) result in overyielding and also, enhanced nodulation by faba beans. By using
Isoflavonoids are characteristic metabolites in legumes and an overwhelming number of reports concerning them come from the Leguminosae. Nevertheless, the spectrum of isoflavonoid producing taxa includes the representatives of four classes of multicellular plants, namely the Bryopsida, the
We used soybean (Glycine max) cDNA microarrays to identify candidate genes for a stable mutation at the Wp locus in soybean, which changed a purple-flowered phenotype to pink, and found that flavanone 3-hydroxylase cDNAs were overexpressed in purple flower buds relative to the pink. Restriction
BACKGROUND
The recent discoveries of transposable elements carrying host gene fragments such as the Pack-MULEs (Mutator-like transposable elements) of maize (Zea mays), rice (Oryza sativa) and Arabidopsis thaliana, the Helitrons of maize and the Tgm-Express of soybeans, revealed a widespread genetic
Flavones are a major group of flavonoids with diverse functions and are extensively distributed in land plants. There are two different classes of FLAVONE SYNTHASE (FNS) enzymes that catalyze the conversion of the flavanones into flavones. The FNSI class comprises soluble
BACKGROUND
The present study aimed to elucidate the potential antifibrotic effects of pinocembrin (PIN), a flavanone found abundantly in honey and propolis, by studying its effect on different oxidative stress, inflammatory and fibrosis markers in an experimental model of CCl4-induced liver
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5 kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with
Three anthocyanin regulatory genes of maize (Zea mays; Lc, B-Peru, and C1) were introduced into alfalfa (Medicago sativa) in a strategy designed to stimulate the flavonoid pathway and alter the composition of flavonoids produced in forage. Lc constructs included a full-length gene and a gene with a
Comprehensive functional data on plant R2R3-MYB transcription factors is still scarce compared to the manifold of their occurrence. Here, we identified the Arabidopsis (Arabidopsis thaliana) R2R3-MYB transcription factor MYB12 as a flavonol-specific activator of flavonoid biosynthesis. Transient
Flavonoids are a large family of polyphenolic compounds with manifold functions in plants. Present in a wide range of vegetables and fruits, flavonoids form an integral part of the human diet and confer multiple health benefits. Here, we report on metabolic engineering of the flavonoid biosynthetic