Страница 1 от 37 полученные результаты
C-Glycosylflavones are ubiquitous in the plant kingdom, and many of them have beneficial effects on human health. They are a special group of flavonoid glycosides in which the sugars are C-linked to the flavone skeleton. It has been long presumed that C-glycosylflavones have a different biosynthetic
Flavanone 3beta-hydroxylase (F3H; EC 1.14.11.9) is a 2-oxoglutarate dependent dioxygenase that catalyzes the synthesis of dihydrokaempferol, the common precursor for three major classes of 3-hydroxy flavonoids, the flavonols, anthocyanins, and proanthocyanidins. This enzyme also competes for flux
A genomic clone encoding flavanone 3-hydroxylase (F3H) was isolated from Arabidopsis thaliana. The deduced amino acid sequence is 72 to 94% identical to all previously reported F3H proteins. Low-stringency DNA blot analysis indicated that F3H is encoded by a single gene in Arabidopsis. The F3H locus
Flavonoids are major secondary metabolites in Camellia sinensis. Flavanone-3-hydroxylase (F3H) is a key enzyme in flavonoid biosynthesis in plants. However, its role in the flavonoid metabolism in C. sinensis has not been well studied. In this study, we cloned two F3Hs from C. sinensis, named CsF3Ha
Flavones are a major class of flavonoids with a wide range of physiological functions in plants. They are constitutively accumulated as C-glycosides and O-linked conjugates in vegetative tissues of grasses. It has long been presumed that the two structural modifications of flavones occur through
Conditions in the parental environment during reproduction can affect the performance of the progenies. The goals of this study were to investigate whether warm or cold temperatures in the parental environment during flowering and seed development affect Arabidopsis thaliana seed properties, growth
The FAH1 and F3H genes encode ferulate-5-hydroxylase and flavanone-3-hydroxylase, which are enzymes in the pathways leading to the synthesis of sinapic acid esters and flavonoids, respectively. Nucleotide variation at these genes was surveyed by sequencing a sample of 20 worldwide Arabidopsis
The existence of only natural brown and green cotton fibers (BCF and GCF, respectively), as well as poor fiber quality, limits the use of naturally colored cotton (Gossypium hirsutum L.). A better understanding of fiber pigment regulation is needed to surmount these obstacles. In this work,
Acceptor substrates flexibility of previously characterized flavonol 7-O-rhamnosyltransferase (AtUGT89C1) from Arabidopsis thaliana was explored with an endogenous nucleotide diphosphate sugar and five different classes of flavonoids (flavonols, flavones, flavanones, chalcone and stilbenes) through
Prenylated flavonoids are natural compounds that often represent the active components in various medicinal plants and exhibit beneficial effects on human health. Prenylated flavonoids are hybrid products composed of a flavonoid core mainly attached to either 5-carbon (dimethylallyl) or 10-carbon
A flavonoid 3'-hydroxylase from tea plant was engineered to synthesize B-3',4'-dihydroxylated flavones such as eriodictyol, dihydroquercetin and quercetin.
Four articifical P450 constructs harboring both flavonoid 3'-hydroxylase gene from Camellia sinensis (CsF3'H) and P450 reductase gene from
Flavonoids, which comprise a large family of secondary plant metabolites, have received increased attention in recent years due to their wide range of features beneficial to human health. One of the most abundant flavonoid skeletons in citrus species is the flavanone naringenin, which is accumulated
Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT)-like proteins from plants display a conserved position specificity towards the meta-position of aromatic vicinal dihydroxy groups, consistent with the methylation pattern observed in vivo. A CCoAOMT-like enzyme identified from Arabidopsis thaliana
We report the production of astragalin (AST) from regiospecific modifications of naringenin (NRN) in Escherichia coli BL21(DE3). The exogenously supplied NRN was converted into dihydrokaempferol (DHK) and then kaempferol (KMF) in the presence of flavanone-3-hydroxylase (f3h) and flavonone synthase
Flavones are ubiquitously accumulated in land plants, but their biosynthesis in monocots remained largely elusive until recent years. Recently, we demonstrated that the rice (Oryza sativa) cytochrome P450 enzymes CYP93G1 and CYP93G2 channel flavanones en route to flavone O-linked conjugates and