Страница 1 от 96 полученные результаты
Pollen coat contains ingredients that interact with the stigma surface during sexual reproduction. In maize (Zea mays L.) pollen coat, the predominant protein is a 35-kDa endoxylanase, whose mRNA is located in the tapetum cells enclosing the maturing pollen in the anthers. This 2.0-kb mRNA was found
Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to
The present study characterized the aspartic protease saposin-like domains of four plant species, Solanum tuberosum (potato), Hordeum vulgare L. (barley), Cynara cardunculus L. (cardoon; artichoke thistle) and Arabidopsis thaliana, in terms of bilayer disruption and fusion, and structure
This paper reports the production and characterization of crude xylanase from the newly isolated Humicola sp. Ly01. The highest (41.8 U/ml) production of the crude xylanase was obtained under the optimized conditions (w/v): 0.5% wheat bran, 0.2% KH2PO4, and 0.5% peptone; initial pH 7.0; incubation
The role of proteolysis during the light-induced rapid decrease of the NADPH: protochlorophyllide oxidoreductase in barley was studied. A proteolytic activity with a pH optimum of 4.5 was present in a plastid preparation of etiolated barley seedlings. No other proteolytic activity could be detected.
Aphids are serious pests in crop plants. In an effort to identify plant genes controlling resistance against aphids, we have here studied a protease inhibitor, CI2c in barley (Hordeum vulgare L.). The CI2c gene was earlier shown to be upregulated by herbivory of the bird cherry-oat aphid
Barley (Hordeum vulgare L. cv Himilaya) aleurain is a vacuolar thiol protease originally isolated as a cDNA with 65% derived amino acid sequence identity with cathepsin H (JC Rogers, D Dean, GR Heck [1985] Proc Natl Acad Sci USA 82: 6512-6516). We purified aleurain from barley leaves to homogeneity
Chloroplast protein degradation was found to occur both inside chloroplasts and in the vacuole. Genes encoding cysteine proteases were found to be highly expressed during leaf senescence. It remained however unclear where they participate in chloroplast protein degradation. HvPAP14, belonging to the
The NADPH:protochlorophyllide oxidoreductase precursor protein (pPorA) of barley (Hordeum vulgare L. cv. Carina), synthesized from a full-length cDNA clone by coupling in vitro transcription and translation, is a catalytically active protein. It converts protochlorophyllide to chlorophyllide in a
Within the cereal aleurone reserve proteins are stored in specialized organelles, the protein storage vacuoles (PSV). We developed an aqueous method for the isolation of intact PSV. Barley (Hordeum vulgare L. cv Himalaya) aleurone protoplasts were gently lysed by passing them through a syringe
Most of the nitrogen harvested with the seeds of annual crops is remobilized and retranslocated within the plant between anthesis and plant death. While chloroplasts contain most of the reduced nitrogen present in photosynthetically active leaf cells, the (major) pathway(s) involved in the
We have cloned and sequenced a 650-nucleotide cDNA from barley (Hordeum vulgare L.) aleurone layers encoding a protein that is closely related to a known α-amylase inhibitor from Indian finger millet (Eleusine coracana Gaertn.), and that has homologies to certain plant trypsin inhibitors. mRNA for
Protein breakdown and mobilization from old or stressed tissues to growing and sink organs are some of the metabolic features associated with abiotic/biotic stresses, essential for nutrient recycling. The massive degradation of proteins implies numerous proteolytic events in which cysteine-proteases
Co-evolutionary processes in plant-pathogen/herbivore systems indicate that protease inhibitors have a particular value in biotic interactions. However, little is known about the defensive role of their targets, the plant proteases. C1A cysteine proteases are the most abundant enzymes responsible
Leaf senescence is characterized by nitrogen remobilization to developing seeds of annual plants, or surviving organs of perennial species. It has been demonstrated that high carbohydrate levels (carbon "feast") are associated with the onset of the senescence process. Therefore, the development of