Страница 1 от 42 полученные результаты
BACKGROUND
Two patients with tree nut allergy manifested by life-threatening systemic reactions reported the subsequent onset of systemic reactions after the consumption of coconut.
OBJECTIVE
Herein, the IgE-binding proteins from coconut are described, and in vitro cross-reactivity with other nuts
BACKGROUND
Buckwheat (Fagopyrum esculentum) has become increasingly popular as a healthy food in Europe. However, for sensitized individuals, consumption can cause anaphylactic reactions. The aim of this study was to identify individual well-characterized buckwheat allergens for component-resolved
IgE-mediated reactions to food allergens constitute a major health problem in industrialized countries. Chickpea is consumed in Mediterranean countries, and reportedly associated with IgE-mediated hypersensitivity reactions. However, the nature of allergic reactions to chickpea has not been
The goji berry (Lycium barbarum L.) (GB) is gaining increasing attention with high consumption worldwide due to its exceptional nutritional value and medicinal benefits displayed in humans. Beyond their beneficial properties, GBs contain renowned allergenic proteins, and therefore deserve
Allergy to hazelnut (Corylus avellana) can be severe and occur at young age. Atopic dermatitis (AD) can involve sensitization to various foods. The objective is to investigate the pattern of hazelnut sensitization in infants with AD. Sera of 34 infants all under 1 year of age and suffering from AD
Legumin proteins Ara h 3 from peanuts and glycinin from soybeans are increasingly described as important allergens. The stability of an allergen's IgE binding capacity towards heating and digestion is considered an important characteristic for food allergens. We investigated the effects of heating
Mung bean seed is a well-known plant protein consumed in Asian countries but the protein is usually retrieved as a waste product during starch production. This study investigated the anti-allergic property of mung bean protein hydrolysates (MBPH) produced by enzymatic hydrolysis using
OBJECTIVE
The presence of IgE cross-reactivity between peanut allergens and allergens from other legumes and tree nuts has been demonstrated, but the identification of the involved individual allergens is still limited. The aim of this review is to describe new allergenic findings, of potential
Peanut allergic individuals can be both co-sensitized and co-allergic to peanut and tree nuts. At the moment, standard diagnostic approaches do not always allow differentiation between clinically relevant sensitization and nonsignificant cross-reactions, and the responsibility of each allergen
Linear IgE-binding epitopes identified in legumin allergens of peanut (Ara h 3) and other allergenic tree nuts (Jug r 4 of walnut, Cor a 9 of hazelnut, Ana o 2 cashew nut) were mapped on three-dimensional models of the proteins built up by homology modelling. A conformational analysis revealed that
BACKGROUND
Using the sera from buckwheat (BW)-allergic patients, several putative causative molecules were reported. However, few molecules were determined on the molecular structure. We demonstrated in 2000 that the major allergen with 24 kDa (BW24KD) is a legumin-like storage
Background: Oral food challenges have demonstrated that diagnosis of almond allergy based on extract-sIgE tests display low specificity. Molecular allergy diagnosis is expected to improve accuracy, but its value in diagnosing almond
BACKGROUND
We recently cloned and described a vicilin and showed it to be a major cashew allergen. Additional IgE-reactive cashew peptides of the legumin group and 2S albumin families have also been reported. Here, we attempt to clone, express and characterize a second major cashew
Allergy to walnut is the most frequently reported tree nut allergy in the United States. Walnut 2S albumin, a vicilin-like protein, and a lipid transfer protein allergen have previously been described. Our objective was to clone and express a cDNA encoding a legumin group protein, assess IgE-binding
BACKGROUND
Ara h 1, a vicilin; Ara h 2, a 2S albumin; and Ara h 3, a legumin, are major peanut allergens. Ara h 2 is an important predictor of clinical reactivity to peanut, but cosensitization to all 3 allergens is correlated with the severity of patients' symptoms.
OBJECTIVE
We investigated