Страница 1 от 149 полученные результаты
BACKGROUND
Whitefly-transmitted geminiviruses (begomoviruses) are a major limiting factor for the production of numerous dicotyledonous crops throughout the world. Begomoviruses differ in the number of components that make up their genomes and association with satellites, and yet they cause
RNA silencing suppressor genes derived from six virus genera were transformed into Nicotiana benthamiana and N. tabacum plants. These suppressors were P1 of Rice yellow mottle virus (RYMV), P1 of Cocksfoot mottle virus, P19 of Tomato bushy stunt virus, P25 of Potato virus X, HcPro of Potato virus Y
OBJECTIVE
To test the effects of 7 virus-encoded RNA silencing suppressors (RSSs) for enhancement of a plant virus-based vector system-mediated heterologous expression of green fluorescence protein (GFP) in Nicotiana benthamiana.
METHODS
Seven transient expression vectors for the 7 RSSs were
The origin of replication of African cassava mosaic virus (ACMV) and a gene expression vector based on Potato virus X were exploited to devise an in planta system for functional analysis of the geminivirus replication-associated protein (Rep) in transgenic Nicotiana benthamiana line pOri-2. This
Sri Lankan cassava mosaic virus (SLCMV) is a bipartite begomovirus infecting cassava in India and Sri Lanka. We have used Agrobacterium-mediated inoculation (agroinoculation) of cloned SLCMV DNA to inoculate additional hosts, Nicotiana tabacum and Arabidopsis. Although SLCMV infection in these hosts
Cassava brown streak disease (CBSD) has a viral aetiology and is caused by viruses belonging to the genus Ipomovirus (family Potyviridae), Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Molecular and serological methods are available for detection, discrimination
Jatropha curcas mosaic disease (JcMD) is a newly emerging disease that has been reported in Africa and India. Here, we report the complete nucleotide sequence of a new Indian cassava mosaic virus isolate (ICMV-SG) from Singapore. Infection of ICMV-SG showed more severe JcMD in Jatropha curcas and
The complete nucleotide sequence of Sri Lankan cassava mosaic virus (SLCMV) DNA-A isolated from cassava in southern India was analyzed, a phylogenetic analysis with other begomoviral nucleotide sequences was performed and an efficient inoculation method of Nicotiana benthamiana with the cloned DNA
Mutants of African cassava mosaic virus containing extensive deletions across the coat protein gene that remove up to one-third of the genomic component have been constructed and shown to be infectious when mechanically inoculated onto Nicotiana benthamiana by leaf abrasion. Using N. tabacum
Cassava mosaic disease is a major constraint to cassava cultivation worldwide. In India, the disease is caused by Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV). The Agrobacterium Ti plasmid virulence gene virE2, encoding a nuclear-localized, single-stranded DNA
Recombinant green fluorescent protein (GFP) with a molecular mass of 29 kDa was transiently expressed in Agrobacterium-inoculated leaf-disks prepared from Nicotiana benthamiana plants. Expression of GFP from the Cauliflower mosaic virus (CaMV) 35 S promoter within a replicating vector based on the
Cloned DNA-B components, belonging to the bipartite begomoviruses Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV), family Geminiviridae, when co-inoculated along with previously cloned DNA-A components of the respective viruses onto the experimental host Nicotiana
Sri Lankan cassava mosaic virus (SLCMV) is bipartite begomovirus infecting cassava in India and Sri Lanka. Interestingly, the DNA-A component of the SLCMV alone is able to infect Nicotiana benthamiana causing symptoms of upward leaf rolling and stunting. One of the differences between monopartite
Cassava brown streak disease (CBSD), caused by two distinct species, Cassava brown streak Uganda virus (CBSUV) and Cassava brown streak virus (CBSV), is a major constraint to cassava (Manihot esculenta Crantz) production in Africa. Absence of infectious clones of CBSUV or CBSV and the lack of
BACKGROUND
Geminiviruses mainly infect terminally differentiated tissues and cells in plants. They need to reprogramme host cellular machinery for DNA replication. This process is thought to be mediated by inactivation of cell-cycle repressor proteins and by induction of host DNA synthesis protein