Страница 1 от 27 полученные результаты
The specific phosphatase, sucrose phosphate phosphohydrolase (sucrose phosphatase, EC 3.1.3.24) was present in vacuole preparations from storage tissue of red beet (Beta vulgaris L.), sugar beet (Beta vulgaris L. cultivar Kawemono), and immature sugarcane (Saccharum spp. hybrid, cultivar NCO 310).
The sugarcane borer, Diatraea saccharalis, is a major target pest of transgenic corn expressing Bacillus thuringiensis (Bt) proteins (i.e., Cry1Ab) in South America and the mid-southern region of the United States. Evolution of insecticide resistance in such target pests is a major threat to the
3-Phosphoglycerate phosphatase and phosphoglycolate phosphatase were found in leaves of all 52 plants examined. Activities of both phosphatases varied widely between 1 to 20 micromoles per minute per milligram chlorophyll. Plants were grouped into two categories based upon the relative ratio of
1. Partially purified sucrose phosphatase from immature stem tissue of sugarcane is inhibited by sucrose. The enzyme was also inhibited by maltose, melezitose and 6-kestose but not by eight other sugars, including glucose and fructose. 2. The relative effectiveness of sucrose, maltose and melezitose
This study aimed to determine the potential toxic effect of 4-day oral treatment with a lignin-based formulation on the enzymatic activity and morphology of the small intestine of rat. Ligmed-A is collected from sugarcane and is used to treat diarrhea in weaning pigs. The compound is about 90%
Aim: To investigate the biocompatibility, type of cell death, osteogenic bioactivity and mRNA expression of the osteogenic markers, induced by CaneCPI-1 in human dental pulp cells (hDPCs).
Methodology:
We evaluated the effect of phosphorus application rates from various sources and in the presence or absence of filter cake on soil phosphorus, plant phosphorus, changes in acid phosphatase activity, and sugarcane productivity grown in Eutrophic Red Ultisol. Three P sources were used (triple
The sugarcane shoot borer Chilo infuscatellus (Snellen) is known for causing severe damage to sugarcane yield in China. Methods have been developed to control this pest, including Cry toxin pesticide and transgenic Bt plants. In order to investigate the molecular mechanism of the Cry toxin binding
The objective of the present study was to determine dehydrin protein levels in sugarcane var. SP80-3280 during somatic embryogenesis. Dehydrins from embryogenic and non-embryogenic cell cultures were analyzed using western blot and in situ immunolocalization microscopy. Both techniques employ
Tonoplast vesicles isolated from stalk parenchyma tissue of sugarcane plants transport sucrose via a uridine diphosphate glucose (UDPGlc)-dependent group translocator. No sucrose transport via an ATP-dependent system could be detected. The products of UDPGlc uptake in the vesicles were sucrose and
Vacuoles were isolated from suspension cultures of sugarcane (Saccharum sp.) cells by centrifugation of protoplasts at high g force against a 12% (w/v) Ficoll solution. Distribution of marker enzymes and Concanavalin A binding showed an 11% contamination of the vacuole preparation by cytoplasmic
To engineer trehalose metabolism in sugarcane (Saccharum spp. hybrids) two transgenes were introduced to the genome: trehalose-6-phosphate synthase- phosphatase (TPSP), to increase trehalose biosynthesis and an RNAi transgene specific for trehalase, to abrogate trehalose catabolism. In
Plants are sessile organisms that need to cope with different conditions. The Base Excision Repair (BER) pathway is an important mechanism protecting the genome from DNA lesions. Apurinic/apyrimidinic (AP) endonucleases are key BER enzymes that process AP sites arising either spontaneously or as BER
In this study, a novel class of polyesters of glycerol, aconitic acid, and cinnamic acid were synthesized along with their hydroxyapatite (HA) composites, and studied for their potential application in bone defect repair. An osteogenic study was conducted with human adipose derived mesenchymal stem