5 полученные результаты
One pathway leading to the bioactive auxin, indole-3-acetic acid (IAA), is known as the tryptamine pathway, which is suggested to proceed in the sequence: tryptophan (Trp), tryptamine, N-hydroxytryptamine, indole-3-acetaldoxime, indole-3-acetaldehyde (IAAld), IAA. Recently, this pathway has been
Auxin, a phytohormone that affects almost every aspect of plant growth and development, is biosynthesized from tryptophan via the tryptamine, indole-3-acetamide, indole-3-pyruvic acid, and indole-3-acetaldoxime pathways. YUCCAs (YUCs), flavin monooxygenase enzymes, catalyze the conversion of
Diethyldithiocarbamate and carbon monoxide markedly inhibited the frequency of embryonic and chlorophyll mutations induced by the metabolism-requiring mutagen dimethylnitrosamine in the higher plant Arabidopsis thaliana. In contrast, the monoamine oxidase substrates, tryptamine, benzylamine and
In plants, the indole pathway provides precursors for a variety of secondary metabolites. In Catharanthus roseus, a decarboxylated derivative of tryptophan, tryptamine, is a building block for the biosynthesis of terpenoid indole alkaloids. Previously, we manipulated the indole pathway by
The plant root colonizing insect-pathogenic fungus Metarhizium robertsii has been shown to boost plant growth, but little is known about the responsible mechanisms. Here we show that M. robertsii promotes lateral root growth and root hair development of Arabidopsis seedlings in part through an auxin