Страница 1 от 29 полученные результаты
Peripheral blood mononuclear cells (PBMCs) from healthy individuals can be infected by human T-lymphotropic virus type 1 (HTLV-1) upon cocultivation of the PBMCs with irradiated HTLV-1-transformed human MT-2 cells. This model system closely mimics HTLV-1 transmission through cell-to-cell contact.
Carbohydrate-binding agents (CBAs), such as the mannose-specific Hippeastrum hybrid agglutinin (HHA) and the GlcNAc-specific Urtica dioica agglutinin (UDA), frequently select for glycan deletions in all different domains of HIV-1 gp120, except in the V1/V2 domain. To reveal the underlying
Carbohydrate-binding agents (CBAs), such as the plant lectins Hippeastrum hybrid agglutinin (HHA) and Urtica dioica agglutinin (UDA), but also the nonpeptidic antibiotic pradimicin A (PRM-A), inhibit entry of HIV into its target cells by binding to the glycans of gp120. Given the high sequence
Carbohydrate recognition by lectins often involves the side chains of tyrosine, tryptophan, and histidine residues. These moieties are able to produce chemically induced dynamic nuclear polarization (CIDNP) signals after laser irradiation in the presence of a suitable radical pair-generating dye.
The side chains of tyrosine, tryptophan and histidine are able to produce CIDNP (Chemically Induced Dynamic Nuclear Polarization) signals after laser irradiation in the presence of a suitable radical pair-generating dye. Elicitation of such a response in proteins implies surface accessibility of the
The interaction of the stinging nettle rhizome lectin (UDA) with carbohydrates was studied by using the techniques of quantitative precipitation, hapten inhibition, equilibrium dialysis, and uv difference spectroscopy. The Carbohydrate binding site of UDA was determined to be complementary to an
Mannose-binding proteins derived from several plants (i.e. Hippeastrum hybrid and Galanthus nivalis agglutinin) or prokaryotes (i.e. cyanovirin-N) inhibit human immunodeficiency virus (HIV) replication and select for drug-resistant viruses that show profound deletion of N-glycosylation sites in the
Coronaviruses are important human and animal pathogens, the relevance of which increased due to the emergence of new human coronaviruses like SARS-CoV, HKU1 and NL63. Together with toroviruses, arteriviruses, and roniviruses the coronaviruses belong to the order Nidovirales. So far antivirals are
OBJECTIVE
Many enveloped viruses carry carbohydrate-containing proteins on their surface. These glycoproteins are key to the infection process as they are mediators of the receptor binding and membrane fusion of the virion with the host cell. Therefore, they are attractive therapeutic targets for
BACKGROUND
Dendritic cells (DC), present in the skin, are the first target cells of dengue virus (DENV). Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) is present on DC and recognizes N-glycosylation sites on the E-glycoprotein of DENV. Thus, the
Exposure of HIV-1 to dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-expressing B-lymphoblast Raji cells (Raji/DC-SIGN) but not to wild-type Raji/0 cells results in the capture of HIV-1 particles to the cells as measured by the quantification of
Urtica dioica agglutinin (UDA) is a superantigen that, in vitro, binds to specific carbohydrate structures on class II and induces a sixfold enrichment of V beta 8.3+ BALB/c mice splenic T cells. Superantigens have pleiotropic effects in vivo, causing the activation, proliferation, and deletion of
OBJECTIVE
The aim of this study was to investigate the chemical composition and antioxidant properties of Urtica urens L.(Uu) as well as its anti-inflammatory effect on carrageenan (CARR)-induced paw oedema in rats.
METHODS
The leaves were extracted using ethanol (EtOH) and water. The extracts were
Nettle seed gum (NSG) which is a novel potential source of hydrocolloid was characterized in terms of yield, physicochemical, rheological, functional and thermal properties. According to Response Surface Methodology, the maximum extraction yield was determined as 6.17% on dry basis. In order to
The binding of the trisaccharide, N,N',N"-triacetylchitotriose, to Urtica dioica agglutinin (UDA) was investigated using 1H NMR spectroscopy. UDA is a small antiviral plant lectin containing two homologous 43-amino acid domains. Carbohydrate-induced pertubations occur in one domain of UDA at