Biocompatible and biodegradable polymersome encapsulated hemoglobin: a potential oxygen carrier.
Kľúčové slová
Abstrakt
This work describes the development of polymersome-encapsulated hemoglobin (PEH) self-assembled from biodegradable and biocompatible amphiphilic diblock copolymers composed of poly(ethylene oxide) (PEO), poly(caprolactone) (PCL), and poly(lactide) (PLA). In the amphiphilic diblock, PEO functions as the hydrophilic block, while either PCL or PLA can function as the hydrophobic block. PEO, PCL, and PLA are biocompatible polymers, while the last two polymers are biodegradable. PEH dispersions were prepared by extrusion through 100 nm pore radii polycarbonate membranes. In this work, the encapsulation efficiency of human and bovine hemoglobin (hHb and bHb) in polymersomes was adjusted by varying the initial concentration of Hb. This approach yielded Hb loading capacities that were comparable to values in the literature that supported the successful resuscitation of hamsters experiencing hemorrhagic shock. Moreover, the Hb loading capacities of PEHs in this study can also be tailored simply by controlling the diblock copolymer concentration. In this study, typical Hb/diblock copolymer weight ratios ranged 1.2-1.5, with initial Hb concentrations less than 100 mg/mL. The size distribution, Hb encapsulation efficiency, oxygen affinity (P 50), cooperativity coefficient (n), and methemoglobin (metHb) level of these novel PEH dispersions were consistent with values required for efficient oxygen delivery in the systemic circulation. Taken together, our results demonstrate the development of novel PEH dispersions that are both biocompatible and biodegradable. These novel dispersions show very good promise as therapeutic oxygen carriers.