Expression and activity of caspases 1 and 3 in myelodysplastic syndromes.
Kľúčové slová
Abstrakt
Myelodysplastic syndromes (MDS) are characterized by abnormal growth of committed progenitors in clonogenic assay, with reduced number of colonies and decreased colony/cluster ratio. It has been suggested that excessive apoptosis is the cause of marrow failure in MDS. We studied the expression of caspase-1 (interleukin-1beta-converting enzyme, ICE) and caspase-3 (CPP32/apopain) in marrow mononuclear cells, and the growth pattern of committed progenitors in a series of 83 MDS cases. The percentage of apoptotic cells as detected by TUNEL technique, and the percentage of caspase-3-positive cells were significantly higher in refractory anemia (RA) and RA with ringed sideroblasts (RAS) than in chronic myelomonocytic leukemia (CMML), refractory anemia with excess of blasts (RAEB) and RAEB in transformation (RAEB-T). Spontaneous growth of CFU-GM was associated with a higher percentage of blasts, and with a lower expression of caspase-3 and caspase-1. The yield of CFU-E, BFU-E, and CFU-GM (in the presence of growth factors) was decreased by comparison to normal marrow, but large individual differences were observed in all cytological categories. Inhibition of caspase-1 and caspase-3 activities by specific inhibitors resulted in a significant increase of the production of all types of colonies (up to 50-fold of control). In the presence of caspase-3 inhibitor, the number of BFU-E and CFU-E was in the range of normal values in most cases of RA and RAS. In addition, caspase-1 and -3 protease activities were detectable by fluorogenic assay in all cases studied. Western blot analysis confirmed the expression of caspase-3, including the cleaved (activated)-p17 form in most cases of RA/RAS analyzed. It is concluded that caspase-3 is implicated in the increased apoptosis observed in MDS and that inhibition of its activity can restore at least partially the growth of committed progenitors.