Panaxydol treatment enhances the biological properties of Schwann cells in vitro.
Kľúčové slová
Abstrakt
Schwann cells (SCs), the glial cells of the peripheral nerve system, play a key role in the regeneration of injured peripheral nerves. However, problems with the use of SCs to repair peripheral nerves include attenuated biologic properties and impaired function with ageing. Panaxydol (PND) effectively protects neurons against injury in degenerative diseases. We investigated the protective role of PND in SCs through immunocytochemistry and ELISA assay. PND promoted the expression and secretion of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) by SCs in a dose-dependent manner at doses of 2.5-20 and 5.0-20 microM, respectively. The effects on both factors were maximal at 10 microM. PND also enhanced the synthesis of actin, a key component of the cytoskeleton. When we examined mitochondria in SCs with probes marked with rhodamine-123, fluorescence intensity was stronger in the PND group than in a control group, indicating a stabilized mitochondrial transmembrane potential. PND modified cytoskeleton dynamics and induced SCs to secrete and express neurotrophic factors (NTFs), and to resist high energy consumption in a dose-dependent manner. It exerted its maximum effect at 10 microM. PND treatment of SCs might be promising strategies for the application of these cells in repairing PNS injury by enhancing the biological properties.