5 výsledky
Site-specific attachment of metal chelators or cytotoxic agents to the carbohydrate region of monoclonal antibodies results in clinically useful immunoconjugates [Doerr et al. (1991) Ann Surg 214: 118, Wynant et al. (1991) Prostate 18: 229]. Since the capacity of monoclonal antibodies (mAb) to
Alpha1,2-mannosidases, key enzymes in N-glycan processing and located both in the endoplasmic reticulum and golgi, have been targets in the development of anti-cancer therapies. Previous studies have shown its involvement in protein degradation. In this study, 1-deoxymannojirimycin, a specific
Golgi alpha-mannosidase II, a key enzyme in N-glycan processing, is a target in the development of anti- cancer therapies. The crystal structure of Drosophila Golgi alpha-mannosidase II in the absence and presence of the anti-cancer agent swainsonine and the inhibitor deoxymannojirimycin reveals a
Carcinoembryonic antigen (CEA) is a heavily glycosylated protein and is expressed at a high frequency in adenocarcinomas, which are known to be one of the cancers most resistant to chemotherapeutic agents. In this study, with the aim to elucidate whether CEA participates in drug resistance or not,
1,5-Anhydro-D-fructose (AF) was first found in fungi and red algae. It is produced by the degradation of glycogen, starch and maltosaccharides with α-1,4-glucan lyase (EC 4.2.2.13). In vivo, AF is metabolized to 1,5-anhydro-D-glucitol (AG), ascopyrone P (APP), microthecin and other derivatives via