9 výsledky
In vitro evidence of hypoxia-induced resistance to cisplatin (CDDP)-mediated apoptosis exists in human osteosarcoma (OS). Gambogic acid (GA) is a promising chemotherapeutic compound that could increase the chemotherapeutic effectiveness of CDDP in human OS cells by inducing cell cycle arrest and
Gambogic acid (GA) is the principal active ingredient of gamboges. GA was reported to exert anti-tumor and anti-inflammatory effects both in vitro and in vivo. Previously, we have shown that GA is a more tissue-specific proteasome inhibitor than bortezomib and it is less toxic to peripheral white
In multiple myeloma (MM), the hypoxic environment is an important factor causing tumor angiogenesis, which is strongly correlated to disease progression and unfavorable outcome by activating the key transcription factor, hypoxia-inducible factor-1α (HIF-1α). Gambogic acid (GA) is the major active
Photodynamic therapy (PDT) and chemotherapy of cancer both meet respective challenges. Tumor hypoxia, low penetration and high glutathione (GSH) level bear the brunt. Herein, a core-shell nanoparticle, with multi-function of hypoxia-responsiveness, specific oxygen supply and deep tumor penetration,
Gamboge is the dried resin secreted by the Garcinia maingayi gambogic tree and is a substance that may be used to treat a variety of diseases, exhibits anti‑tumor and detoxification effects and prevents bleeding. The primary active constituent is gambogic acid. The present study aimed to investigate
OBJECTIVE
Hypoxia is an important factor that causes decreased local disease control as well as increased distant metastases and resistance to radiotherapy in patients with advanced nasopharyngeal carcinoma (NPC). Gambogic acid (GA), the major active ingredient of gamboge, exerts antitumor effects
Our previous studies revealed that gambogic acid (GA), the major active ingredient of gamboge, possessed antiangiogenic activities. In this study, we further explored the mechanism of inhibition effects of GA in tumor angiogenesis. The results of luciferase, RT-PCR, and ELISA assays indicated that
Combination of antiangiogenesis and chemotherapy holds vast promise for effective inhibition of tumor proliferation and invasion. Herein, a multifunctional self-assembled nanosystem consisting of amphiphilic c(RGDyK)-functionalized low-molecular-weight heparin-gambogic acid conjugate (cRHG) is
The surface potential of particles is a double-edged sword for nanomedicine. The negative charge can protect nanoparticles from clearance before they reach the tumor tissue; however, it is difficult to phagocytose the negative particles by target cells due to the negative potential of the