10 výsledky
Comparative biochemical and histopathological evidence suggests that a deficiency in the glycogen branching enzyme, encoded by the GBE1 gene, is responsible for a recently identified recessive fatal fetal and neonatal glycogen storage disease (GSD) in American Quarter Horses termed GSD IV. We have
Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disorder caused by deficiency of the glycogen-debranching enzyme (AGL). Recent studies of the AGL gene have revealed the prevalent mutations in North African Jewish and Caucasian populations, but whether these common mutations
Glycogen storage disease type III (GSD-III) is an autosomal recessive disease resulting from deficient glycogen debranching enzyme (GDE) activity. A child with GDE deficient in both liver and muscle (GSD-IIIa) had recurrent hypoglycemia, seizures, severe cardiomegaly, and hepatomegaly and died at 4
Hyperphenylalaninemia result from a block in the conversion of phenylalanine into tyrosine due to a defect in either the enzyme phenylalanine hydroxylase (98% of subjects) or in the metabolism of the cofactor tetrahydrobiopterin. Phenylalanine hydroxylase deficiency is the most common form of
We report on a family of three consecutive fetuses affected by type IV glycogen storage disease (GSD IV). In all cases, cervical cystic hygroma was observed on the 12-week-ultrasound examination. During the second trimester, fetal hydrops developed in the first pregnancy whereas fetal akinesia
Glycogenin-1 initiates the glycogen synthesis in skeletal muscle by the autocatalytic formation of a short oligosaccharide at tyrosine 195. Glycogenin-1 catalyzes both the glucose-O-tyrosine linkage and the α1,4 glucosidic bonds linking the glucose molecules in the oligosaccharide. We recently
An enzyme's active site is essential to normal protein activity such that any disruptions at this site may lead to dysfunction and disease. Nonsynonymous single-nucleotide variations (nsSNVs), which alter the amino acid sequence, are one type of disruption that can alter the active site. When this
Human acid alpha-glucosidase (GAA, EC 3.2.1.20) is a lysosomal enzyme that belongs to the glycoside hydrolase family 31 (GH31) and catalyses the hydrolysis of alpha-1,4- and alpha-1,6-glucosidic linkages at acid pH. Hereditary deficiency of GAA results in lysosomal glycogen storage disease type II
Lafora disease is the most severe teenage-onset progressive epilepsy, a unique form of glycogenosis with perikaryal accumulation of an abnormal form of glycogen, and a neurodegenerative disorder exhibiting an unusual generalized organellar disintegration. The disease is caused by mutations of the
Hepatomegaly can be triggered by insulin and insulin-unrelated etiologies. Insulin acts via AKT, but how other challenges cause hepatomegaly is unknown.METHODS
Since man
y hepatomegal
y-inducing toxicants and stressors activate NRF2, we examined the