Strana 1 od 92 výsledky
A possible approach for altering alkaloid biosynthesis in plants is the expression of genes encoding key enzymes of a pathway such as lysine decarboxylase (ldc) in transgenic plants. Two strategies were followed here: one focused on expression of the gene in the cytoplasm, the other on subsequent
The interaction between viral capsid protein (CP) and its cognate viral RNA modulates many steps in the virus infection cycle, such as replication, translation and assembly. The N-terminal 50 amino acids of the Red clover necrotic mosaic virus (RCNMV) CP are rich in basic residues (especially
The gene of a bacterial lysine decarboxylase (ldc) fused to a rbcS transit peptide coding sequence (tp), and under the control of the CaMV 35S promoter, was expressed in hairy root cultures of Nicotiana tabacum. The fusion of the ldc to the targeting signal sequence improved the performance of the
The cDNA encoding ornithine decarboxylase (ODC; EC 4.1.1.17), a key enzyme in putrescine and polyamine biosynthesis, has been cloned from Nicotiana glutinosa (GenBank AF 323910), and was expressed in Escherichia coli. The amino acid sequence of N. glutinosa ODC showed 90% identity with Datura
Cells of Nicotiana tabacum L. cv. Wisconsin 38 were immobilized on poly (2,6-dimethyl)-p-phenyleneoxide in powder form (Sorfix) coated with poly-L-lysine (molecular weight 40 000 daltons). The dependence of cell immobilization on the amount of bound polyL-lysine was estimated.
Lysine ubiquitination, a widely studied posttranslational modification, plays vital roles in various biological processes in eukaryotic cells. Although several studies have examined the plant ubiquitylome, no such research has been performed in tobacco, a model plant for molecular biology. Here, we
Several hairy root cultures of Nicotiana tabacum varieties, carrying two direct repeats of a bacterial lysine decarboxylase (ldc) gene controlled by the cauliflower mosaic virus (CaMV) 35S promoter expressed LDC activity up to 1 pkat/mg protein. Such activity was, for example, sufficient to increase
Magnaporthe oryzae is an important fungal pathogen of both rice and wheat. However, how M. oryzae effectors modulate plant immunity is not fully understood. Previous studies have shown that the M. oryzae effector AvrPiz-t targets the host ubiquitin-proteasome system to manipulate plant defence. In
Lysine synthesis in prokaryotes, some phycomycetes and higher plants starts with the condensation of L-aspartate-beta-semialdehyde (L-ASA) and pyruvate into dihydrodipicolinic acid. The enzyme that catalyses this step, dihydrodipicolinate synthase (DHDPS), is inhibited by the end-product lysine and
A technique which allows determination of solute pool concentrations in the cytosol was developed exploiting the interaction between a polycation and the anionic sites of the plasmalemma. It was shown that treatment of Nicotiana tabacum, cv Xanthi, cells in suspension culture with an appropriate
By applying a mutagenesis/selection procedure to obtain resistance to a lysine analog, S-(2-aminoethyl)L-cysteine (AEC), a lysine overproducing mutant in Nicotiana sylvestris was isolated. Amino acid analyses performed throughout plant development and of different organs of the N. sylvestris RAEC-1
Two S-(2-aminoethyl)L-cysteine (AEC) resistant lines were isolated by screening mutagenized protoplasts from diploid N. sylvestris plants. Both lines accumulated free lysine at levels 10 to 20-fold higher than in controls. Lysine overproduction and AEC-resistance were also expressed in plants
Histone crotonylation is a new lysine acylation type of post-translational modification (PTM) enriched at active gene promoters and potential enhancers in yeast and mammalian cells. However, lysine crotonylation in nonhistone proteins and plant cells has not yet been studied. In the present study,
Microbial secondary metabolites produced by Streptomyces are applied to control plant diseases. ε-poly-l-lysine (ε-PL) is a non-toxic food preservative, but the potential application of ε-PL as a microbial fungicide in agriculture has rarely been reported. In this study, Alternaria alternata (A.
Lysine decarboxylase (LDC) catalyzes the first-step in the biosynthetic pathway of quinolizidine alkaloids (QAs), which form a distinct, large family of plant alkaloids. A cDNA of lysine/ornithine decarboxylase (L/ODC) was isolated by differential transcript screening in QA-producing and