12 výsledky
The impact of magnolol on cerebral ischemic stroke in rats and the molecular mechanism were explored. Sprague-Dawley rat models were studied. Cerebral indexes, hematoxylin and eosin staining, TUNEL staining assay, reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were
BACKGROUND
Silent information regulator 1 (SIRT1), a histone deacetylase, plays a protective role in ischemic brain injury. Previous studies have shown that magnolol has a beneficial effect on ischemic stroke; however, the role of SIRT1 in the protective effect of magnolol against cerebral ischemia
Magnolol, which is a CYP3A substrate, is a well-known agent that can facilitate neuroprotection and reduce ischemic brain damage. However, a well-controlled release formulation is needed for the effective delivery of magnolol due to its poor water solubility. In this study, we have developed a
Magnolol, a neolignan compound isolated from traditional Chinese medicine Magnolia officinalis, has a potentially therapeutic influence on ischemic stroke. Previous studies have demonstrated that cerebral ischemia-reperfusion (I-R) and blood-brain barrier (BBB) are involved in the pathogeneses of
Neuroprotective efficacy of magnolol, 5,5'-dially-2,2'-dihydroxydiphenyl, was investigated in a model of stroke and cultured neurons exposed to glutamate-induced excitotoxicity. Rats were subjected to permanent middle cerebral artery occlusion (pMCAO). Magnolol or vehicle was administered
Hyperlipidemia is a risk factor of arteriosclerosis, stroke, and other coronary heart disease, which has been shown to correlate with single nucleotide polymorphisms of genes essential for lipid metabolism, such as lipoprotein lipase (LPL) and apolipoprotein A5 (APOA5). In this study, the effect of
Intracerebral haemorrhage (ICH) induces inflammation, which can cause severe secondary injury. Recent evidence has suggested that magnolol (MG) has a protective effect against ischaemic stroke through the inhibition of inflammation. However, the anti-inflammatory effect of MG in intracerebral
When rats were exposed to high environmental temperature (e.g., 42 or 43 degrees C), hyperthermia, hypotension, and cerebral ischemia and damage occurred during heat stroke were associated with increased production of free radicals (specifically hydroxyl radicals and superoxide anions), higher lipid
Magnolol is isolated from the herb Magnolia officinalis, which has been demonstrated to exert pharmacological effects. Our aim was to investigate whether magnolol is able to act as an anti-inflammatory agent that brings about neuroprotection using a global ischemic stroke model and to determine the
In the present study, the neuroprotective potential of magnolol against ischemia-reperfusion brain injury was examined via in vivo and in vitro experiments. Magnolol exhibited strong radical scavenging and antioxidant activity, and significantly inhibited the production of interleukin‑6, tumor
Magnolia officinalis is widely used in Southeast Asian countries for the treatment of fever, headache, diarrhea, and stroke. Magnolol is a phenolic compound extracted from M. officinalis, with proven antibacterial, antioxidant, anti-inflammatory, and anticancer activities. In this
Magnolol, honokiol, and obovatol are well-known bioactive constituents of the bark of Magnolia officinalis and have been used as traditional Chinese medicines for the treatment of neurosis, anxiety, and stroke. We recently isolated novel active compound (named 4-O-methylhonokiol) from the ethanol