9 výsledky
The dineolignan manassantin A from Saururaceae was recently identified as a hypoxia-inducible factor 1 (HIF-1) inhibitor, but its in-vivo anti-tumor effect has not been explored. We synthesized a series of manassantin A derivatives, and found that replacing the central tetrahydrofuran moiety with a
Hypoxia-inducible factor-1 (HIF-1) represents a novel antitumor target owing to its involvement in vital processes considered hallmarks of cancer phenotypes. Manassantin A (MA) derived from Saururus cernuus has been reported as a selective HIF-1 inhibitor. Herein, the structure of MA was optimized
OBJECTIVE
To investigate the inhibitory activity of HIF-1 by triptolide and manasaantin A, two cell-based models with luciferase report gene assay were established.
METHODS
Two cell-based models of HIF-1 were used to evaluate HIF-1 inhibition activity of triptolide and manasaantin A. Secreted VEGF
Tumors adapt to hypoxia by regulating angiogenesis, metastatic potential, and metabolism. These adaptations mediated by hypoxia-inducible factor 1 (HIF-1) make tumors more aggressive and resistant to chemotherapy and radiation. Therefore, HIF-1 is a validated therapeutic target for cancer. In order
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor on hypoxia responses in mammalian tissues. HIF-1 plays as a positive factor in solid tumor and leads to hypoxia-driven responses that enhance its downstream gene expression for tumor growth and survival. LXY6099 was obtained by the
To cope with hypoxia, tumor cells have developed a number of adaptive mechanisms mediated by hypoxia-inducible factor 1 (HIF-1) to promote angiogenesis and cell survival. Due to significant roles of HIF-1 in the initiation, progression, metastasis, and resistance to treatment of most solid tumors, a
Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a
Diaromatic-substituted ortho- and meta-carboranes were synthesized as mimics of manassantin A. Among the carboranes synthesized, compounds 1 and 2 showed significant inhibition of hypoxia-induced HIF-1 transcriptional activity, with IC(50) values of 3.2 and 2.2 μM, respectively. Compounds 1 and 2
Dineolignans manassantin A and B from the plant Saururus cernuus are used in traditional medicine to manage a wide range of ailments such as edema, jaundice, and gonorrhea. Cell-based studies have identified several molecular target candidates of manassantin including NF-κB, MAPK, STAT3, and