Strana 1 od 129 výsledky
Magnetic field enhanced photodynamic therapy is an effective non-invasive technique for the eradication of cancer diseases. In this report, magnetic field enhancement of the photodynamic therapy (PDT) efficacy of a novel
Tumor and especially breast cancer is among the most common causes of death worldwide. Finding novel nanosized therapeutic compounds have important role to decrease the chance of death and increase the survival. Cancer cells are highly attractive to glucose [with a nanosize bimolecular structure
Background: Theranostic agents combine photosensitizers and contrast agents into a single unit for photothermal therapy (PTT) and magnetic resonance imaging (MRI). The possibility of treating and diagnosing malignant cancers without any
A water-soluble tetra-S-glycosylated porphyrin (P-Glu(4)) is absorbed by MDA-MB-231 human breast cancer cells whereupon irradiation with visible light causes necrosis or apoptosis depending on the concentration of the porphyrin and the power of the light. With the same amount of light irradiation
We hypothesized that over-expression of estrogen receptor (ER) in hormone-sensitive breast cancer could be harnessed synergistically with the tumor-migrating effect of porphyrins to selectively deliver estrogen-porphyrin conjugates into breast tumor cells, and preferentially kill the tumor cells
Marycin is a porphyrin-type compound synthetically modified to spontaneously release fluorescence. This study is aimed at understanding possible mechanisms that could account for the antiproliferative effects observed in marycin. A proteomic approach was used to identify molecular We hypothesized that expression of nuclear estrogen receptor (ER) in hormone-sensitive breast cancer cells could be harnessed synergistically with the tumor-accumulating effect of porphyrins to selectively deliver estrogen-porphyrin conjugates into breast tumor cells, and preferentially kill tumor
A conjugate of a C(11)-beta-derivative of estradiol and an asymmetric tetraphenylporphyrin was synthesized to study its potential selective uptake by breast cancer cells naturally over-expressing the nuclear receptor for estrogen (ER). Competitive radioligand binding assays of this conjugate with
MnTE-2-PyP(5+) is a potent catalytic scavenger of reactive oxygen and nitrogen species, primarily superoxide and peroxynitrite. It therefore not only attenuates primary oxidative damage, but was found to modulate redox-based signaling pathways (HIF-1alpha, NF-kappaB, SP-1, and AP-1) and thus, in
Magnetic resonance imaging (MRI) contrast agents (CAs) are chemical compounds that can enhance image contrast on T1- or T2- weighted MR image. We have previously demonstrated the potential of MnCl2, a manganese-based CA, in cellular imaging of breast cancer using T1-weighted MRI. In this work, we
To improve the non-invasive therapeutic efficacy for ER positive breast cancer (ER+ BC), we fabricated a multifunctional FOXA1 loaded porphyrin microbubble to combine photodynamic therapy (PDT) and gene therapy of FOXA1 knockdown (KD) with ultrasound targeted microbubble destruction (UTMD)
The major challenge in photodynamic therapy (PDT) is to discover versatile photosensitizers (PSs) that possess good solubility in biological media, enhanced singlet oxygen generation efficacy, and photodynamic activity. Working in this direction, we synthesized a picolylamine-functionalized
The synthesis and characterization of bare silica (4 nm in diameter) nanoparticle-attached meso-tetra(N-methyl-4-pyridyl)porphine (SiO(2)-TMPyP, 6 nm in diameter) are described for pH-controllable photosensitization. Distinguished from organosilanes, SiO(2) nanoparticles were functionalized as a
A photosensitizer with high phototoxicity, low dark toxicity, and good water solubility is crucial for effective photodynamic therapy (PDT). In this study, a novel class of porphyrin-based water-soluble derivative and its isomers, named photohexer-1 (P-1) and photohexer-2 (P-2), were synthesized and
Gold nanorods are effective photothermal agents in diagnosis and treatment of cancer due to their specific near-infrared laser absorption. However, tumor photothermal therapy by nanorods alone is lack of targeting. Here, we described a novel nanocomplex made up of gold nanorods, porphyrin, and