Strana 1 od 166 výsledky
Increased oxidative stress has an important role in asthmatic airway inflammation and remodeling. A potent methyl donor, S-adenosylmethionine (SAMe), is known to protect against tissue injury and fibrosis through modulation of oxidative stress. The aim of this study was to evaluate the effect of
Chronic inflammation precedes the majority of hepatocellular carcinoma (HCC) cases. We investigated the chemopreventive potential of S-adenosylmethionine (SAM), an essential donor for all methylation reactions in the cell, at the late precancerous stage of HCC development using the Mdr2-knockout
BACKGROUND
S-adenosylmethionine is a methyl donor in many cellular reactions including detoxification of constantly produced hydrogen sulphide in the colon. A reduced capacity to detoxify hydrogen sulphide may be implicated in the pathogenesis of inflammatory bowel disease. S-adenosylmethionine
Chronic inflammation is an underlying risk factor for colon cancer. Tumor necrosis factor alpha (TNF-α) plays a critical role in the development of inflammation-induced colon cancer in a mouse model. S-adenosylmethionine (SAMe) and its metabolite methylthioadenosine (MTA) can inhibit
Activated macrophages adapt their metabolic pathways to drive the pro-inflammatory phenotype, but little is known about the biochemical underpinnings of this process. Here, we find that lipopolysaccharide (LPS) activates the pentose phosphate pathway, the serine synthesis pathway, and one-carbon
S-adenosylmethionine (SAM), the unique methyl donor in DNA methylation, has been shown to lower lipopolysaccharide (LPS)-induced expression of the proinflammatory cytokine TNF-α and increase the expression of the anti-inflammatory cytokine IL-10 in macrophages. The aim of this study was to assess
The sulfur compound and dietary supplement S-adenosylmethionine (SAM) has been reported to have cytoprotective and antioxidant properties. However, the underlying mechanisms remain unresolved. The present study investigates the effect of SAM on the expression of the antioxidant stress proteins heme
IL-10 is produced by a large variety of cells including monocytes, macrophages, B and T lymphocytes, as well as natural killer cells and is an important suppressor for both immunoproliferative and inflammatory responses. IL-10 exerts antifibrotic effects in the liver, and decreased monocyte
BACKGROUND
S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are relevant to a variety of diseases. Previous reports that quantified SAM and SAH were based on HPLC or LC-MS/MS. No antibody against SAM has been generated, and the antibody against SAH cannot be used with blood samples.
BACKGROUND
Prostate cancer (PCa) displays a strong familiarity component and genetic factors; genes regulating inflammation may have a pivotal role in the disease. Epigenetic changes control chromosomal integrity, gene functions and ultimately carcinogenesis. The enzyme glycine-N-methyltransferase
We had discussed earlier that, after most of the primary author's multiple sclerosis (MS) symptoms were lessened by prior neuroimmune therapies, use of dimethyl fumarate (DMF) gradually subdued his asthma and urticaria symptoms, as well as his MS-related intercostal cramping; and bupropion
Ischemia/reperfusion (I/R) is a condition that stimulates an intense inflammatory response. No ideal treatment exists. Triflusal is an antiplatelet salicylate derivative with anti-inflammatory effects. S-adenosylmethionine is a metabolic precursor for glutathione, an endogenous antioxidant.
Severe necrotizing pancreatitis occurs in young female mice fed a choline-deficient and ethionine-supplemented (CDE) diet. Although the mechanism of the pancreatitis is unknown, one consequence of this diet is depletion of hepatic S-adenosylmethionine (SAM). SAM formation is catalyzed by methionine
OBJECTIVE
The association between hyperhomocysteinaemia and cardiovascular disease has been attributed to low levels of S-adenosylmethionine (SAM), a metabolic intermediate of homocysteine. However, the role of SAM in the development of restenosis has not been explored. Therefore, we investigated