Strana 1 od 49 výsledky
A purple acid phosphatase from sweet potato is the first reported example of a protein containing an enzymatically active binuclear Fe-Mn center. Multifield saturation magnetization data over a temperature range of 2 to 200 K indicates that this center is strongly antiferromagnetically coupled.
Purple acid phosphatase (PAP) was purified from sweet potato dry powder, which is used as a food additive. Spectrometric and enzymatic analyses, and analysis of the amino-terminal sequence indicated that the purified purple acid phosphatase was PAP1. High activity in neutral and acidic conditions,
Purple acid phosphatases (PAPs) are a family of binuclear metalloenzymes that catalyze the hydrolysis of phosphoric acid esters and anhydrides. A PAP in sweet potato has a unique, strongly antiferromagnetically coupled Fe(III)-Mn(II) center and is distinguished from other PAPs by its increased
Purple acid phosphatase from sweet potato is a homodimer of 110 kDa. Two forms of the enzyme have been characterized. One contains an Fe-Zn centre similar to that previously reported for red kidney bean purple acid phosphatase. Another isoform, the subject of this work, is the first confirmed
Sweet potato acid phosphatase was covalently coupled with glutaraldehyde to aminopropyl controlled-pore glass, and used as a pre-column enzyme reactor. The immobilized enzyme reactor (IMER) was continuously operated using an automated chromatographic detection system we developed. Functional
A cDNA encoding a putative arsenate reductase homologue (IbArsR) was cloned from sweet potato (Ib). The deduced protein showed a high level of sequence homology (16-66%) with ArsRs from other organisms. A 3-D homology structure was created based on AtArsR (PDB code 1T3K ) from Arabidopsis thaliana.
Although a great deal of progress has been made toward understanding the role of abscisic acid (ABA) in fruit ripening, many components in the ABA signalling pathway remain to be elucidated. Here, a strawberry gene homologous to the Arabidopsis gene ABI1, named FaABI1, was isolated and
The electronic structure and magnetic interactions of the active site of sweet potato purple acid phosphatase (PAP) were investigated by using UHF, pure DFT (UBLYP), and hybrid DFT methods (UB3LYP and UB2LYP). PAP catalyzes the hydrolysis of a phosphate ester under acidic conditions and contains a
Purple acid phosphatases comprise a family of binuclear metal-containing acid hydrolases, representatives of which have been found in animals, plants, and fungi. The goal of this study was to characterize purple acid phosphatases from sweet potato tubers and soybean seeds and to establish their
The currently accepted paradigm is that the purple acid phosphatases (PAPs) require a heterovalent, dinuclear metal-ion center for catalysis. It is believed that this is an essential feature for these enzymes in order for them to operate under acidic conditions. A PAP from sweet potato is unusual in
Purple acid phosphatases (PAPs) from sweet potato (sp) have been classified on the basis of their primary structure and the dinuclear metal center into isoforms spPAP1 [Fe(III)-Zn(II)] and spPAP2 [Fe(III)-Mn(II)]; for spPAP3 only the cDNA is known. With the aim of unraveling the character of the
Chemical modification studies of manganese(III)-containing acid phosphatase [EC 3.1.3.2] were carried out to investigate the contributions of specific amino-acid side-chains to the catalytic activity. Incubation of the enzyme with N-ethylmaleimide at pH 7.0 caused a significant loss of the enzyme
The new heterodinuclear mixed valence complex [Fe(III)Mn(II)(BPBPMP)(OAc)(2)]ClO(4) (1) with the unsymmetrical N(5)O(2) donor ligand 2-bis[((2-pyridylmethyl)-aminomethyl)-6-((2-hydroxybenzyl)(2-pyridylmethyl))-aminomethyl]-4-methylphenol (H(2)BPBPMP) has been synthesized and characterized. Compound