7 výsledky
A procedure is described for isolation of active ubiquinol-cytochrome c oxidoreductase (bc1 complex) from potato tuber mitochondria using dodecyl maltoside extraction and ion exchange chromatography. The same procedure works well with mitochondria from red beet and sweet potato. The potato complex
The cytochrome-c reductase (EC 1.10.2.2) of the mitochondrial respiratory chain couples electron transport from ubiquinol to cytochrome c with proton translocation across the inner mitochondrial membrane. The enzyme from potato was shown to be composed of 10 subunits. Isolation and characterization
The major mitochondrial processing activity removing presequences from nuclear encoded precursor proteins is present in the soluble fraction of fungal and mammalian mitochondria. We found that in potato, this activity resides in the inner mitochondrial membrane. Surprisingly, the proteolytic
Plant mitochondria differ from those of mammals, since they incorporate an alternative electron transport pathway, which branches at ubiquinol to an alternative oxidase (AOX), characteristically inhibited by salicylhydroxamic acid (SHAM). Another feature of plant mitochondria is that besides complex
The general mitochondrial processing peptidase that removes the N-terminal targeting signals from proteins imported into mitochondria forms part of a respiratory protein complex in potato (Solanum tuberosum L.). We have termed this complex the "cytochrome c reductase/processing peptidase complex"
Ubiquinol-cytochrome-c oxidoreductase has been isolated from potato (Solanum tuberosum L.) mitochondria by cytochrome-c affinity chromatography and gel-filtration chromatography. The procedure, which up to now only proved applicable to Neurospora, yields a highly pure and active protein complex in
A project to systematically investigate respiratory supercomplexes in plant mitochondria was initiated. Mitochondrial fractions from Arabidopsis, potato (Solanum tuberosum), bean (Phaseolus vulgaris), and barley (Hordeum vulgare) were carefully treated with various concentrations of the nonionic