Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Ecology 1986-May

Coadaptation ofDrosophila and yeasts in their natural habitat.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
W T Starmer
J C Fogleman

Ključne besede

Povzetek

The mutualistic interactions of cactophilicDrosophila and their associated yeasts in the Sonoran Desert are studied as a system which has evolved within the framework of their host cactus stem chemistry. Because theDrosophila-yeast system is saphrophytic, their responses are not thought to directly influence the evolution of the host. Host cactus stem chemistry appears to play an important role in determining where cactophilicDrosophila breed and feed. Several chemicals have been identified as being important. These include sterols and alkaloids of senita as well as fatty acids and sterol diols of agria and organpipe cactus. Cactus chemistry appears to have a limited role in directly determining the distribution of cactus-specific yeasts. Those effects which are known are due to unusual lipids of organpipe cactus and triterpene glycosides of agria and organpipe cactus.Drosophilayeast interactions are viewed as mutualistic and can take the form of (1) benefits to theDrosophila by either direct nutritional gains or by detoxification of harmful chemicals produced during decay of the host stem tissue and (2) benefits to the yeast in the form of increased likelihood of transmission to new habitats. Experiments on yeast-yeast interactions in decaying agria cactus provide evidence that the yeast community is coadapted. This coadaptation among yeasts occurs in two manners: (1) mutualistic increases in growth rates (which are independent of the presence ofDrosophila larvae) and (2) stabilizing competitive interactions when growth reaches carrying capacity. This latter form is dependent on larval activity and results in benefits to the larvae present. In this sense, the coadapted yeast community is probably also coadapted with respect to itsDrosophila vector.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge