Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2001-Apr

Elicitor-induced changes in isoflavonoid metabolism in red clover roots.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
S Tebayashi
A Ishihara
H Iwamura

Ključne besede

Povzetek

When roots of 5-d-old red clover (Trifolium pratense L.) seedlings were treated with chitohexaose and CuCl(2), constitutive glucosidic conjugates of formononetin (F) and (-)-maackiain (Ma) promptly disappeared. Free F and Ma, which were not detected in the control tissues, rapidly appeared to reach the maximum levels 24 h after the initiation of treatment and then declined. The pattern of appearance and disappearance was the same between the tissues treated with chitohexaose and CuCl(2). The enzyme activities related to isoflavonoid metabolism were investigated using crude extracts from elicitor-treated roots. The conjugate-forming glucosyltransferase and malonyltransferase activities were lost or markedly reduced after elicitor treatment. On the other hand, malonylesterase and glucosidase activities remained unchanged or showed only slight increase. Phenylalanine ammonia-lyase activity disappeared following elicitor treatment. These results indicated that free aglycones were produced from the conjugate pool by hydrolysis under conditions in which the biosynthetic pathway was extinguished. The amount of Ma produced did not explain that of MaGM lost (about 45%). Since Ma, but not its conjugates, served as a substrate for peroxidase from the elicitor-treated roots, Ma was considered to be converted to insoluble materials.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge