Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Methods in Molecular Biology 2020

Introduction to Purinergic Signaling.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Geoffrey Burnstock

Ključne besede

Povzetek

Purinergic signaling was proposed in 1972, after it was demonstrated that adenosine 5'-triphosphate (ATP) was a transmitter in nonadrenergic, noncholinergic inhibitory nerves supplying the guinea-pig taenia coli. Later, ATP was identified as an excitatory cotransmitter in sympathetic and parasympathetic nerves, and it is now apparent that ATP acts as a cotransmitter in most, if not all, nerves in both the peripheral nervous system and central nervous system (CNS). ATP acts as a short-term signaling molecule in neurotransmission, neuromodulation, and neurosecretion. It also has potent, long-term (trophic) roles in cell proliferation, differentiation, and death in development and regeneration. Receptors to purines and pyrimidines have been cloned and characterized: P1 adenosine receptors (with four subtypes), P2X ionotropic nucleotide receptors (seven subtypes) and P2Y metabotropic nucleotide receptors (eight subtypes). ATP is released from different cell types by mechanical deformation, and after release, it is rapidly broken down by ectonucleotidases. Purinergic receptors were expressed early in evolution and are widely distributed on many different nonneuronal cell types as well as neurons. Purinergic signaling is involved in embryonic development and in the activities of stem cells. There is a growing understanding about the pathophysiology of purinergic signaling and there are therapeutic developments for a variety of diseases, including stroke and thrombosis, osteoporosis, pain, chronic cough, kidney failure, bladder incontinence, cystic fibrosis, dry eye, cancer, and disorders of the CNS, including Alzheimer's, Parkinson's. and Huntington's disease, multiple sclerosis, epilepsy, migraine, and neuropsychiatric and mood disorders.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge