Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tidsskrift for den Norske Laegeforening 2003-Sep

[The genetic basis of muscle disease].

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Laurence Bindoff
Nils Erik Gilhus

Ključne besede

Povzetek

BACKGROUND

Our understanding of the genetic basis of muscle disease has grown dramatically over the last few years. Gene tests are now available for the diagnosis of several conditions and molecular research is providing greater understanding of pathogenesis.

METHODS

This article reviews some of these advances.

RESULTS

Duchenne and Becker muscular dystrophies are allelic disorders that differ in age of onset and severity. This can be explained at the genetic level by different types of mutations, one giving total protein loss (Duchenne) whereas the other results in a less severe deficiency (Becker). Facioscapulohumeral muscular dystrophy is associated with deletion involving repeated DNA in the sub-telomeric region of chromosome 4. No single gene responsible for this disorder has been identified, but we know that deletion size correlates with disease severity. Interestingly, complete removal of this region does not result in disease. Limb girdle muscular dystrophies share a similar phenotype, but genetic and protein studies show that this can be the result of mutation in very different types of protein including a protease. There are now two forms of myotonic dystrophy, both caused by what are called expansions, an increased number of triplet repeats. Both forms demonstrate multisystem involvement and in both cases more than one genetic mechanism has been shown to be active. Certain muscle diseases appear more common in Scandinavia. Amongst these are the distal myopathies in which one type prevalent in Finland has been linked to defects in the titin protein.

CONCLUSIONS

The challenge is now to translate the advances in our understanding of genetic mechanism into potential forms of treatment. Unfortunately, while much research is focused on techniques such as gene therapy, myoblast transplantation and the use of stem cells, these have not yet born fruit.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge